



# INSTRUCTION FOR USE

# **Urinary Tract Infections Panel PCR Kit**

For Research Use Only



100



MBLUTI004





# **Document Revision History**

| Rev.No_Date           | Revision Description |
|-----------------------|----------------------|
| Rev.00_June 20, 2024  | First Release        |
| Rev.01_April 10, 2025 | Minor Revision       |
| Rev.02_June 10, 2025  | Minor Revision       |
|                       |                      |
|                       |                      |
|                       |                      |

MarinaBiolab Urinary Tract Infections Panel PCR Kit

# **CONTENTS**

| 1.  | INTENDE  | ) USE           |                                                | 3  |
|-----|----------|-----------------|------------------------------------------------|----|
| 2.  | PRINCIPI | .E of the PROCE | EDURE                                          | 4  |
| 3.  | KIT COM  | PONENTS         |                                                | 5  |
| 4.  | EQUIPME  | NT and MATER    | RIALS REQUIRED but NOT PROVIDED                | 7  |
| 5.  | WARNING  | and PRECAUT     | IONS                                           | 8  |
| 6.  | HANDLIN  | G, STORAGE, a   | and STABILITY                                  | 9  |
| 7.  | TEST PR  | OCEDURE         |                                                | 10 |
|     | 7.1.     | Sample Prepa    | aration and Nucleic Acid Extraction            | 10 |
|     | 7.2.     | PCR Reaction    | Preparation and Processing                     | 10 |
| 8.  | INTERPRE | TATION OF RE    | SULTS                                          | 12 |
|     | 8.1.     | Calculation of  | Cq Values and Instrument-Specific Requirements | 12 |
|     | 8.2.     | Overall Validit | y of Detection                                 | 12 |
|     | 8.3.     | Interpretation  | of Unknown Specimen Results                    | 13 |
| 9.  | ASSAY L  | IMITATIONS      |                                                | 14 |
| 10. | PERFORM  | IANCE CHARA     | CTERISTICS                                     | 15 |
|     | 10.1.    | Analytical Ser  | nsitivity (Limit of Detection, LoD)            | 15 |
|     | 10.2.    | Device Equiva   | alence Study                                   | 17 |
|     | 10.3.    | Analytical Rea  | activity (Inclusivity)                         | 17 |
|     |          | 10.3.1. I       | n-Slico Analytical Reactivity                  | 17 |
|     |          | 10.3.2. V       | Net-Test Analytical Reactivity                 | 20 |
|     | 10.4.    | Analytical Spe  | ecificity (Exclusivity)                        | 21 |
|     |          | 10.4.1. I       | n-Slico Analytical Specificity                 | 21 |
|     |          | 10.4.2. V       | Net-Test Analytical Specificity                | 23 |
|     | 10.5.    | Interference    | S                                              | 25 |
| 11. | TROUBL   | ESHOOTING       |                                                | 28 |
| 12. | EXPLANA  | TION of SYMBO   | DLS                                            | 29 |

#### 1. INTENDED USE

For Research Use Only (RUO). Not for use in diagnostic procedures. No claim or representation is intended to provide information for the diagnosis, prevention, or treatment of disease. Furthermore, this test kit is not intended for the diagnosis of infectious diseases in animals.

The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* is a multiplex, qualitative Real-Time Polymerase Chain Reaction (qPCR) test intended for the simultaneous detection and identification of multiple pathogenic nucleic acids in research samples. The kit enables qPCR results in less than one hour. It is designed to detect gene sequences from the following organisms:

| Targets                      |                                           |  |  |  |
|------------------------------|-------------------------------------------|--|--|--|
| Escherichia coli             | Corynebacterium urealyticum               |  |  |  |
| Streptococcus agalactiae     | Enterococcus faecium                      |  |  |  |
| Klebsiella oxytoca           | Enterococcus faecalis                     |  |  |  |
| Staphylococcus saprophyticus | Acinetobacter baumannii                   |  |  |  |
| Serratia marcescens          | Proteus vulgaris                          |  |  |  |
| Proteus mirabilis            | Staphylococcus aureus                     |  |  |  |
| Aerococcus urinae            | Ureplasma (Ureaplasma urealyticum/parvum) |  |  |  |
| Treponema pallidum           | Providencia stuartii                      |  |  |  |
| Enterobacter cloacae         | Candida albicans                          |  |  |  |
| Pseudomonas aeruginosa       | Candida glabrata                          |  |  |  |
| Citrobacter freundii         | Candida parapsilosis                      |  |  |  |
| Klebsiella aerogenes         | Candida tropicalis                        |  |  |  |
| Klebsiella pneumoniae        | Candida krusei                            |  |  |  |
| Morganella morganii          | Candida auris                             |  |  |  |
| Controls                     |                                           |  |  |  |
| Human Ri                     | Nase P (IC)                               |  |  |  |
| Bacillus atrophaeus (EC)     |                                           |  |  |  |

#### 2. PRINCIPLE of the PROCEDURE

DNA target regions are amplified using real-time PCR instruments, along with the specific primer and probe sets provided in the kit. During amplification, each probe binds to a specific target sequence located between the forward and reverse primers. During the extension phase of the PCR cycle, the 5' nuclease activity of Taq polymerase cleaves the probe, separating the reporter dye from the quencher and generating a fluorescent signal. With each cycle, more reporter dye molecules are released, resulting in an increase in fluorescence intensity. Fluorescence is measured at each cycle by the real-time PCR instrument. Probes labeled with distinct fluorophores are used to detect specific amplicons derived from both the target sequences and the internal control. The PCR instrument monitors the fluorescence signals in real time and interprets the data to provide a qualitative result for each target. A positive result for the presence of target DNA is indicated by the appearance of a real-time PCR amplification curve and a corresponding Cq (Quantification Cycle) value.

MarinaBiolab Urinary Tract Infections Panel PCR Kit

#### 3. KIT COMPONENTS

The MarinaBiolab Urinary Tract Infections Panel PCR Kit consists of four main components:

- 1. qPCR Enzyme and Buffer Mix (qPCR Master Mix)
- 2. Forward, Reverse and Probe Oligo Mix (UTIP Oligo Mix 1-8)
- 3. A mixture of non-infectious DNA from artificial samples, including the targets listed in the table below (PC-UTIP)
- 4. DNase/RNase-Free Water (NTC)

The components of the kit are provided in Table 1-2.

Table 1. Kit components.

|                    |                                                                                                          | Quantity x Volume    |  |
|--------------------|----------------------------------------------------------------------------------------------------------|----------------------|--|
| Component          | Description                                                                                              | 100 rxn<br>MBLUTI004 |  |
| qPCR Master Mix    | Ready-to-use mix for qPCR                                                                                | 4 x 1000 μL          |  |
| UTIP Oligo Mix 1-8 | Primers and probes complementary to specific regions of the targets listed in the table above            | 8 x 250 μL           |  |
| PC-UTIP            | A mixture of non-infectious DNA from artificial samples, including the targets listed in the table below | 2 x 400 μL           |  |
| NTC                | DNase/RNase-Free Water                                                                                   | 2 x 400 μL           |  |

**Table 2.** Oligo Mix target organisms and detection channels.

| Vial Name              | Target                       | Channel              |
|------------------------|------------------------------|----------------------|
|                        | Escherichia coli             | FAM/Green            |
| LITID OF the Affect of | Streptococcus agalactiae     | HEX/VIC/JOE/Yellow   |
| UTIP Oligo Mix 1       | Klebsiella oxytoca           | ROX/Texas Red/Orange |
|                        | Human RNase P (IC)           | CY5/Red              |
|                        | Staphylococcus saprophyticus | FAM/Green            |
| LITID Olivo Miv 2      | Serratia marcescens          | HEX/VIC/JOE/Yellow   |
| UTIP Oligo Mix 2       | Proteus mirabilis            | ROX/Texas Red/Orange |
|                        | Aerococcus urinae            | CY5/Red              |
|                        | Treponema pallidum           | FAM/Green            |
| LITID Olina Miv 2      | Enterobacter cloacae         | HEX/VIC/JOE/Yellow   |
| UTIP Oligo Mix 3       | Pseudomonas aeruginosa       | ROX/Texas Red/Orange |
|                        | Citrobacter freundii         | CY5/Red              |

|                   | Klebsiella aerogenes                      | FAM/Green            |  |  |  |
|-------------------|-------------------------------------------|----------------------|--|--|--|
| LITID Olivo Miv 4 | Klebsiella pneumoniae                     | HEX/VIC/JOE/Yellow   |  |  |  |
| UTIP Oligo Mix 4  | Morganella morganii                       | ROX/Texas Red/Orange |  |  |  |
|                   | Corynebacterium urealyticum               | CY5/Red              |  |  |  |
|                   | Enterococcus faecium                      | FAM/Green            |  |  |  |
| UTIP Oligo Mix 5  | Enterococcus faecalis                     | HEX/VIC/JOE/Yellow   |  |  |  |
| OTTP Oligo Mix 5  | Acinetobacter baumannii                   | ROX/Texas Red/Orange |  |  |  |
|                   | Proteus vulgaris                          | CY5/Red              |  |  |  |
|                   | Staphylococcus aureus                     | FAM/Green            |  |  |  |
| LITID Olive Miv C | -                                         | HEX/VIC/JOE/Yellow   |  |  |  |
| UTIP Oligo Mix 6  | Ureplasma (Ureaplasma urealyticum/parvum) | ROX/Texas Red/Orange |  |  |  |
|                   | -                                         | CY5/Red              |  |  |  |
|                   | Candida albicans                          | FAM/Green            |  |  |  |
| UTIP Oligo Mix 7  | Candida glabrata                          | HEX/VIC/JOE/Yellow   |  |  |  |
| OTTP Oligo Mix 7  | Candida parapsilosis                      | ROX/Texas Red/Orange |  |  |  |
|                   | Providencia stuartii                      | CY5/Red              |  |  |  |
|                   | Candida tropicalis                        | FAM/Green            |  |  |  |
| LITID Olice Mix 0 | Candida krusei                            | HEX/VIC/JOE/Yellow   |  |  |  |
| UTIP Oligo Mix 8  | Candida auris                             | ROX/Texas Red/Orange |  |  |  |
|                   | Bacillus atrophaeus (EC)                  | CY5/Red              |  |  |  |

The oligonucleotide set targeting the human *RNase P* (Internal Control: IC) and *Bacillus atrophaeus* (External Control: EC) are used to monitor sampling, nucleic acid extraction, and inhibition of qPCR. The kit also contains negative and positive control templates to evaluate contamination and the qPCR reagent stability, respectively.

•

For Research Use Only

Rev.02\_June 10, 2025

#### 4. EQUIPMENT and MATERIALS REQUIRED but NOT PROVIDED

- 2-8°C Refrigerator
- ≤ -20°C Freezer
- ≤ -70°C Freezer (Optional)
- Vortex mixer
- Benchtop centrifuge with rotor for 1.5 mL tubes
- Benchtop mini centrifuge with rotor for PCR strips
- Benchtop plate centrifuge
- Biological Safety Cabinet (BSC)
- PCR cabinet for PCR Setup
- Adjustable Micropipettes: 1-10, 10-100, 100-1000 μL
- Sterile DNase/RNase free micropipettes tips Compatible with the micropipettes
- Cold tube rack for microfuge tubes (1.5/2 mL) and for PCR tubes (0.1/0.2 mL)
- Disposable, powder-free, nitrile gloves
- Disposable (preferably) laboratory coat
- Surface decontaminants Freshly diluted 10% bleach solution (0.5% NaClO)
- Applied Biosystems QuantStudio 5, 7, and 12K with Design & Analysis software and consumables
- Bio-Rad CFX96 Touch™/CFX96™ Dx/CFX Opus 96™/CFX Opus 96™ Dx/CFX384 Touch™/CFX Opus 384™ with Maestro software v1.1 and consumables
- Qiagen Rotor-Gene Q 5plex Platform with Rotor-Gene Q series software v2.1.0.9 and consumables
- Roche LightCycler 480 with software and consumables

#### 5. WARNING and PRECAUTIONS

- The MarinaBiolab Urinary Tract Infections Panel PCR Kit is intended for research use only and should be used by
  professionally trained, qualified personnel. All procedures should be performed in accordance with Good Laboratory
  Practices (GLP).
- Biological material used for nucleic acid extraction should be handled as potentially infectious. Appropriate safety
  precautions are recommended when handling biological material (e.g., do not pipet by mouth; wear disposable gloves;
  disinfect hands after completing the test).
- Biological material should be inactivated before disposal (e.g., autoclaving). Disposable items should be autoclaved or incinerated after use.
- In the event of a spill involving potentially infectious materials, the spill should be immediately absorbed with paper tissue, and the affected area should be disinfected using a suitable standard disinfectant or 70% alcohol. Materials used for cleaning spills, including gloves, should be inactivated before disposal (e.g., autoclaving).
- Disposal of all samples, unused reagents and waste should be in accordance with country, federal, state, and local regulations.
- To avoid microbial contamination of reagents during aliquoting, it is recommended to use sterile, single-use pipettes and tips. Reagents that appear cloudy or show signs of microbial contamination should not be used.
- The kit should be stored away from nucleic acid sources and PCR amplicons to prevent contamination.
- Always check the expiration date on the kit. Do not use expired or improperly stored kits.
- Components in the kit should not be mixed with components from different lot numbers or from different manufacturers,
   even if they contain the same components.
- The kit components should be gently mixed before use by shaking.
- A common issue with PCR-based assays is false positive results caused by contamination from PCR amplicons. To minimize the risk of amplicon contamination:
  - Ensure separate work areas with dedicated apparatus are available for each stage of the procedure.
  - Do not open reaction tubes/plates post-amplification to avoid contamination with amplicons.
  - o Discard used tubes/plates immediately in a biohazard container after completing the run.
  - Minimize handling of tubes/plates after testing.
  - Change gloves after handling used tubes/plates.

#### 6. HANDLING, STORAGE, and STABILITY

- The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* is shipped on dry ice. If any component, except the qPCR Master Mix, is not frozen upon arrival or if the outer packaging has been compromised during shipment, please contact **MarinaBiolab** or the local distributor immediately.
- Upon arrival, all components should be stored between -25°C and -15°C.
- Repeated freezing and thawing of the kit components may reduce detection quality. The kit can withstand up to 15 freeze/thaw cycles without impacting performance.
- When stored under the specified conditions, the kit remains stable until the expiration date printed on the package. The expiration date is 12 months from the date of manufacture.
- All components must be thawed at ambient temperature for at least 30 minutes before use.
- It is recommended to keep all components on ice when preparing the assay mixes.
- The primer and probe mixes contain fluorophore-labeled probes and should be protected from direct sunlight and prolonged exposure to ambient light.
- Do not use expired or improperly stored components.

#### 7. TEST PROCEDURE

#### 7.1. Sample Preparation and Nucleic Acid Extraction

Samples intended for nucleic acid isolation must be collected using appropriate cell collection systems. The performance of the kit is highly dependent on both the quantity and quality of the extracted nucleic acid. Ensure that the extraction method used is compatible with real-time PCR technology.

If the laboratory's established standard protocol is used for nucleic acid isolation, it must be validated by the end user.

For frozen samples or previously extracted nucleic acid, thaw only the amount required for testing on the same day. Avoid multiple freeze/thaw cycles, as these can compromise nucleic acid integrity. For best results, use the nucleic acid immediately after thawing.

### 7.2. PCR Reaction Preparation and Processing

- Completely thaw all components at room temperature for at least 30 minutes prior to use.
- Once thawed, keep all components on ice throughout the entire testing procedure.
- Determine the number of reactions needed and prepare a PCR plate layout accordingly.
- The plate layout should include the following:
  - Reactions for each test sample and extraction negative control.
  - PCR control reactions:
    - Positive Control (provided in the kit)
    - Negative (No Template) Control (NTC) (provided in the kit)
    - No Template Addition Control (NRC)
- Vortex and briefly centrifuge all components before each use.
- Prepare a master mix by combining the required components for the total number of reactions plus an additional 10% to account for pipetting variability.

Table 3. Reaction set-up.

| Reaction Mix Component | 1Χ Reaction (μL) per well |  |
|------------------------|---------------------------|--|
| qPCR Master Mix        | 5 μL                      |  |
| UTIP Oligo Mix 1-8     | 2.5 μL                    |  |
| Template Nucleic Acid  | 2.5 μL                    |  |
| Total Reaction Volume  | 10 μL                     |  |

- Add 5  $\mu$ L of qPCR Master Mix and 2.5  $\mu$ L of UTIP Oligo Mix 1-8 to each PCR tube.
- Add 2.5 μL of the isolated sample to the corresponding tubes.
- The final reaction volume should be 10 µL.
- Close the tubes, centrifuge briefly, then place them into the real-time PCR instrument.
- Proceed with amplification using the PCR profile outlined below.

For Research Use Only Rev.02 June 10, 2025

 Table 4. Amplification profile.

| Step                 | Number of Cycles | Temperature | Time   | Data Collection                         |
|----------------------|------------------|-------------|--------|-----------------------------------------|
| Initial Denaturation | 1                | 95 ℃        | 10 sec | FAM/Green                               |
| Denaturation         | 40               | 95 ℃        | 5 sec  | HEX/VIC/JOE/Yellow ROX/Texas Red/Orange |
| Annealing/Extension  | 40               | 55 ℃        | 15 sec | CY5/Red                                 |

For Research Use Only

Page **11** of **29** 

#### 8. INTERPRETATION OF RESULTS

**MarinaBiolab Urinary Tract Infections Panel PCR Kit** provides a qualitative result for the presence (Detected) or absence (Not Detected) of the target genes.

# 8.1. Calculation of Cq Values and Instrument-Specific Requirements

Configure the following instrument settings before evaluating the results.

**Table 5.** Instrument-specific settings.

| Instrument                                                                                    | Threshold Level | Other Settings                                                      |
|-----------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|
| CFX96 Touch™/CFX96™ Dx/CFX Opus 96™/CFX Opus 96™ Dx/<br>CFX384 Touch™/CFX Opus 384™ (Bio-Rad) | 500 RFU         | -                                                                   |
| Rotor-Gene Q 5plex Platform (QIAGEN)                                                          | 0.02 RFU        | Dynamic Tube: Active<br>Slope Correct: Active<br>Outlier Removal: 0 |
| QuantStudio™ 5, 7 and 12K (Applied Biosystems™)                                               | Auto            | -                                                                   |
| Roche LightCycler 480 (Roche)                                                                 | Auto            | -                                                                   |

The shape of the amplification curves should be evaluated. If the instrument's software assigns a Cq value to a sample and the curve is sigmoidal, the Cq value can be used in the final assessment. *Non-sigmoidal curves should be recorded as negative*.

A result is considered positive if the Cq value is  $\leq$ 35, or as determined by your laboratory's protocols.

#### 8.2. Overall Validity of Detection

**Table 6.** Expected performance of controls.

| Control Type                                                              | Used to Monitor                                                                 | Signal         |                                   |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|-----------------------------------|
| Control Type                                                              | osea to monitor                                                                 | Target Channel | Internal/External Control Channel |
| Negative Control Cross-contamination during extraction and reaction setup |                                                                                 | -              | -                                 |
| No template addition                                                      | Reagent and/or environmental contamination                                      | -              | -                                 |
| Positive Control                                                          | qPCR reaction setup and reagent integrity                                       | +              | +                                 |
| Internal/External Control                                                 | To monitor the integrity of nucleic acid extraction and qPCR from each specimen | Not applicable | +                                 |

Before analyzing sample results, we recommend verifying the validity of the real-time PCR test. For each run, please confirm that the Positive and Negative controls performed as expected, based on the following criteria:

**Table 7.** Run validity/positive and negative control pass criteria.

| Positive       | Positive Control                     |                | Control                              |         | _                                                                                           |
|----------------|--------------------------------------|----------------|--------------------------------------|---------|---------------------------------------------------------------------------------------------|
| Target Channel | Internal/External<br>Control Channel | Target Channel | Internal/External<br>Control Channel | Results | Recommendation                                                                              |
| +              | +                                    | -              | -                                    | VALID   | Proceed with the interpretation of sample results.                                          |
| Any of them    | Any of them is Negative              |                | sidered                              | INVALID | Contact the manufacturer, replenish the reagents, and repeat the reaction.                  |
| Not considered |                                      | Any of then    | n is Positive                        | INVALID | Repeat the analysis, ensuring to follow the 'Warnings and Precautions' outlined in the IFU. |

If any control fails to perform as described above, the run is considered invalid and must be repeated. If the issue persists, contact the manufacturer.

If all controls perform as expected, proceed with the interpretation of the results.

# 8.3. Interpretation of Unknown Specimen Results

The data generated by the instruments can be manually evaluated and reported using their software.

**Table 8.** Interpretation of unknown specimen results for DNA pathogens.

| DNA Pathogens                  | Internal Control<br>(RNase P)  | External Control (Bacillus atrophaeus) | Results             | Interpretation                                                                                                |
|--------------------------------|--------------------------------|----------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------|
| Positive (+)<br>(Cq<35)        | Positive (+)<br>(Cq<35)        | Positive (+)<br>(Cq<35)                | Positive for Target | Target DNA is detected                                                                                        |
| Positive (+)<br>(Cq<35)        | Negative (-)<br>(Cq≥35 or N/A) | Positive (+)<br>(Cq<35)                | Positive for Target | Target DNA is detected                                                                                        |
| Positive (+)<br>(Cq<35)        | Positive (+)<br>(Cq<35)        | Negative (-)<br>(Cq≥35 or N/A)         | Positive for Target | Target DNA is detected                                                                                        |
| Positive (+)<br>(Cq<35)        | Negative (-)<br>(Cq≥35 or N/A) | Negative (-)<br>(Cq≥35 or N/A)         | Invalid             | Repeat the test by re-extracting the sample. If the result remains invalid, consider collecting a new sample. |
| Negative (-)<br>(Cq≥35 or N/A) | Positive (+)<br>(Cq<35)        | Positive (+)<br>(Cq<35)                | Negative for Target | Target DNA is not detected                                                                                    |
| Negative (-)<br>(Cq≥35 or N/A) | Negative (-)<br>(Cq≥35 or N/A) | Positive (+)<br>(Cq<35)                | Negative for Target | Target DNA is not detected                                                                                    |
| Negative (-)<br>(Cq≥35 or N/A) | Positive (+)<br>(Cq<35)        | Negative (-)<br>(Cq≥35 or N/A)         | Negative for Target | Target DNA is not detected                                                                                    |
| Negative (-)<br>(Cq≥35 or N/A) | Negative (-)<br>(Cq≥35 or N/A) | Negative (-)<br>(Cq≥35 or N/A)         | Invalid             | Repeat the test by re-extracting the sample. If the result remains invalid, consider collecting a new sample. |

#### 9. ASSAY LIMITATIONS

- The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* is intended for use only by professionally trained and qualified staff
- A false negative result may occur if the specimen is improperly collected, transported, or handled. False negatives can also occur if amplification inhibitors are present in the specimen or if insufficient numbers of organisms are present.
- Spontaneous mutations within the target sequences may result in failure to detect the target. While the test design mitigates this risk, if target detection failure is anticipated, it is recommended to test the specimen with a different assay that targets other sequences in the genome.
- There is a risk of false positive results due to cross-contamination by target viruses and/or bacteria, their nucleic acids or amplified products, or from non-specific signals in the assay. Proper handling of consumables, as outlined in the Warnings and Precautions section, is crucial to minimize this risk.
- This assay is qualitative and does not provide a quantitative assessment of the detected organism's concentration.
- All instruments (e.g., pipettes, real-time PCR cyclers) must be calibrated according to the manufacturer's instructions.

•

#### 10. PERFORMANCE CHARACTERISTICS

#### 10.1. Analytical Sensitivity (Limit of Detection, LoD)

The limit of detection (LoD) was defined as the concentration at which the test produces a positive result more than 95% of the time. Serial dilutions of the strains were tested, and the initial tentative LoD was confirmed with twenty (20) replicates. To ensure the accuracy of the LoD determination, if the initial detection rate was 100%, an additional twenty (20) replicates were performed at the next lower concentration until a detection rate of  $\leq$ 95% was achieved.

For nucleic acid extraction, a simulated research matrix was spiked with strains and processed using the Automatic Nucleic Acids Extraction Instrument. Testing was carried out on the CFX96 Touch<sup>™</sup> (Bio-Rad) Real-Time PCR system. The confirmed LoDs for the strains tested, along with the corresponding LoDs for the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* reportable targets, are presented in Table 9 below.

Table 9. Summary of LoD study results.

| Analyte                      | Isolate ID/Source   | LoD Concentration (copies/mL) | Detected/Total       |
|------------------------------|---------------------|-------------------------------|----------------------|
| Escherichia coli             | ATCC 25922          | 3.5E+01 copies/mL             | <b>20/20</b><br>100% |
| Streptococcus agalactiae     | ATCC 12386          | 6.7E+01 copies/mL             | <b>19/20</b><br>95%  |
| Klebsiella oxytoca           | ATCC 700324         | 2.6E+01 copies/mL             | <b>20/20</b><br>100% |
| Staphylococcus saprophyticus | Zeptometrix 0804014 | 5.7E+01 copies/mL             | <b>20/20</b><br>100% |
| Serratia marcescens          | ATCC 29021          | 2.1E+02 copies/mL             | <b>20/20</b><br>100% |
| Proteus mirabilis            | Zeptometrix 0801544 | 2.1E+02 copies/mL             | <b>20/20</b><br>100% |
| Aerococcus urinae            | ATCC 51268          | 4.5E+01 copies/mL             | <b>20/20</b><br>100% |
| Treponema pallidum           | In-house            | 6.9E+01 copies/mL             | <b>20/20</b><br>100% |
| Enterobacter cloacae         | Zeptometrix 0801830 | 7.4E+01 copies/mL             | <b>19/20</b><br>95%  |
| Pseudomonas aeruginosa       | ATCC 27853          | 6.7E+02 copies/mL             | <b>20/20</b><br>100% |
| Citrobacter freundii         | Zeptometrix 0801563 | 4.2E+01 copies/mL             | <b>20/20</b><br>100% |
| Klebsiella aerogenes         | ATCC 13048          | 2.4E+02 copies/mL             | <b>20/20</b><br>100% |

| Klebsiella pneumoniae       | NCTC 13465            | 3.0E+01 copies/mL | <b>20/20</b><br>100% |
|-----------------------------|-----------------------|-------------------|----------------------|
| Morganella morganii         | Zeptometrix 0804010   | 4.8E+01 copies/mL | <b>20/20</b><br>100% |
| Corynebacterium urealyticum | ATCC 43044            | 4.1E+01 copies/mL | <b>20/20</b><br>100% |
| Enterococcus faecium        | ATCC BAA-2127         | 4.5E+01 copies/mL | <b>20/20</b><br>100% |
| Enterococcus faecalis       | Zeptometrix 0804216   | 3.6E+02 copies/mL | <b>20/20</b><br>100% |
| Acinetobacter baumannii     | ATCC 19606            | 1.7E+02 copies/mL | <b>20/20</b><br>100% |
| Proteus vulgaris            | Zeptometrix 0810290CF | 1.5E+02 copies/mL | <b>20/20</b><br>100% |
| Staphylococcus aureus       | ATCC 10832            | 5.5E+01 copies/mL | <b>20/20</b><br>100% |
| Ureaplasma urealyticum      | ATCC 27618            | 5.0E+01 copies/mL | <b>20/20</b><br>100% |
| Ureaplasma parvum           | ATCC 27815            | 4.0E+01 copies/mL | <b>20/20</b><br>100% |
| Providencia stuartii        | Zeptometrix 0810452CF | 4.5E+01 copies/mL | <b>20/20</b><br>100% |
| Candida albicans            | ATCC 10231            | 3.4E+02 copies/mL | <b>20/20</b><br>100% |
| Candida glabrata            | ATCC 90030            | 4.4E+01 copies/mL | <b>20/20</b><br>100% |
| Candida parapsilosis        | ATCC 22019            | 5.8E+01 copies/mL | <b>20/20</b><br>100% |
| Candida tropicalis          | ATCC 750              | 5.7E+01 copies/mL | <b>20/20</b><br>100% |
| Candida krusei              | ATCC 2159             | 6.8E+01 copies/mL | <b>20/20</b><br>100% |
| Candida auris               | ATCC MYA-5003         | 7.2E+01 copies/mL | <b>19/20</b><br>95%  |

#### 10.2. Device Equivalence Study

A device equivalence study was conducted to assess the differences in results obtained using the kit across various instruments. For this purpose, the same LoD determination study was repeated using the Bio-Rad CFX96<sup>™</sup> Dx/CFX Opus 96<sup>™</sup>/CFX Opus 96<sup>™</sup> Dx/CFX384 Touch<sup>™</sup>/CFX Opus 384<sup>™</sup>, Applied Biosystems QuantStudio 5, 7, and 12K, Qiagen Rotor-Gene Q 5plex Platform, and Roche LightCycler 480. Similar results were obtained at the 1x LoD concentration level of the targets in the device equivalence study across the different instruments.

#### 10.3. Analytical Reactivity (Inclusivity)

#### 10.3.1. In-Slico Analytical Reactivity

A BLAST search of the oligonucleotides was conducted on the genome sequences of Escherichia coli, Streptococcus agalactiae, Klebsiella oxytoca, Staphylococcus saprophyticus, Serratia marcescens, Proteus mirabilis, Aerococcus urinae, Treponema pallidum, Enterobacter cloacae, Pseudomonas aeruginosa, Citrobacter freundii, Klebsiella aerogenes, Klebsiella pneumoniae, Morganella morganii, Corynebacterium urealyticum, Enterococcus faecium, Enterococcus faecalis, Acinetobacter baumannii, Proteus vulgaris, Staphylococcus aureus, Ureplasma (Ureaplasma urealyticum/parvum), Providencia stuartii, Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris using the Primer-BLAST tool on the NCBI database.

The aggregated results of all in-silico analyses performed using the NCBI database are provided in the table below. The melting temperatures (Tm) of the oligonucleotide sequences with a 1-base mismatch remain higher than the annealing temperature specified in the PCR cycle parameters of the kit. Therefore, single base mismatches in the sequences are not expected to impact the inclusivity of the test.

**Table 10.** In-silico analysis results performed in the NCBI database.

| Target                       | Primer           | Total number<br>of target<br>sequences | Ratio of the<br>sequences<br>without<br>mismatch | Ratio of the<br>sequences<br>with 1 base<br>mismatch | Ratio of the<br>sequences<br>with 2 base<br>mismatches | Ratio of the<br>sequences<br>with 3 base<br>mismatches |
|------------------------------|------------------|----------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Escherichia coli             | Sense Primer     | 5.547                                  | 99.25%                                           | 0.75%                                                | 0.00%                                                  | 0.00%                                                  |
| Escherichia coli             | Antisense Primer | 5.579                                  | 99.65%                                           | 0.35%                                                | 0.00%                                                  | 0.00%                                                  |
| Escherichia coli             | Hydrolysis Probe | 5.579                                  | 99.78%                                           | 0.22%                                                | 0.00%                                                  | 0.00%                                                  |
| Streptococcus agalactiae     | Sense Primer     | 226                                    | 99.95%                                           | 0.05%                                                | 0.00%                                                  | 0.00%                                                  |
| Streptococcus agalactiae     | Antisense Primer | 236                                    | 100.00%                                          | 0.00%                                                | 0.00%                                                  | 0.00%                                                  |
| Streptococcus agalactiae     | Hydrolysis Probe | 236                                    | 100.00%                                          | 0.00%                                                | 0.00%                                                  | 0.00%                                                  |
| Klebsiella oxytoca           | Sense Primer     | 150                                    | 99.74%                                           | 0.26%                                                | 0.00%                                                  | 0.00%                                                  |
| Klebsiella oxytoca           | Antisense Primer | 158                                    | 99.56%                                           | 0.44%                                                | 0.00%                                                  | 0.00%                                                  |
| Klebsiella oxytoca           | Hydrolysis Probe | 158                                    | 99.83%                                           | 0.27%                                                | 0.00%                                                  | 0.00%                                                  |
| Staphylococcus saprophyticus | Sense Primer     | 26                                     | 99.52%                                           | 0.48%                                                | 0.00%                                                  | 0.00%                                                  |
| Staphylococcus saprophyticus | Antisense Primer | 26                                     | 97.52%                                           | 2.48%                                                | 0.00%                                                  | 0.00%                                                  |
| Staphylococcus saprophyticus | Hydrolysis Probe | 26                                     | 99.74%                                           | 0.26%                                                | 0.00%                                                  | 0.00%                                                  |

| Serratia marcescens         | Sense Primer     | 296   | 99.80%  | 0.20% | 0.00% | 0.00% |
|-----------------------------|------------------|-------|---------|-------|-------|-------|
| Serratia marcescens         | Antisense Primer | 296   | 99.80%  | 0.20% | 0.00% | 0.00% |
| Serratia marcescens         | Hydrolysis Probe | 292   | 99.82%  | 0.18% | 0.00% | 0.00% |
| Proteus mirabilis           | Sense Primer     | 164   | 100.00% | 0.00% | 0.00% | 0.00% |
| Proteus mirabilis           | Antisense Primer | 164   | 100.00% | 0.00% | 0.00% | 0.00% |
| Proteus mirabilis           | Hydrolysis Probe | 160   | 99.80%  | 0.20% | 0.00% | 0.00% |
| Aerococcus urinae           | Sense Primer     | 80    | 100.00% | 0.00% | 0.00% | 0.00% |
| Aerococcus urinae           | Antisense Primer | 80    | 100.00% | 0.00% | 0.00% | 0.00% |
| Aerococcus urinae           | Hydrolysis Probe | 76    | 100.00% | 0.00% | 0.00% | 0.00% |
| Treponema pallidum          | Sense Primer     | 538   | 99.64%  | 0.36% | 0.00% | 0.00% |
| Treponema pallidum          | Antisense Primer | 538   | 99.64%  | 0.36% | 0.00% | 0.00% |
| Treponema pallidum          | Hydrolysis Probe | 538   | 99.50%  | 0.50% | 0.00% | 0.00% |
| Enterobacter cloacae        | Sense Primer     | 683   | 99.63%  | 0.37% | 0.00% | 0.00% |
| Enterobacter cloacae        | Antisense Primer | 669   | 99.12%  | 0.88% | 0.00% | 0.00% |
| Enterobacter cloacae        | Hydrolysis Probe | 669   | 99.82%  | 0.18% | 0.00% | 0.00% |
| Pseudomonas aeruginosa      | Sense Primer     | 1.162 | 99.75%  | 0.25% | 0.00% | 0.00% |
| Pseudomonas aeruginosa      | Antisense Primer | 1.167 | 99.79%  | 0.21% | 0.00% | 0.00% |
| Pseudomonas aeruginosa      | Hydrolysis Probe | 1.167 | 99.84%  | 0.16% | 0.00% | 0.00% |
| Citrobacter freundii        | Sense Primer     | 175   | 99.70%  | 0.30% | 0.00% | 0.00% |
| Citrobacter freundii        | Antisense Primer | 175   | 99.70%  | 0.30% | 0.00% | 0.00% |
| Citrobacter freundii        | Hydrolysis Probe | 168   | 99.90%  | 0.10% | 0.00% | 0.00% |
| Klebsiella aerogenes        | Sense Primer     | 83    | 98.52%  | 1.48% | 0.00% | 0.00% |
| Klebsiella aerogenes        | Antisense Primer | 82    | 97.11%  | 2.89% | 0.00% | 0.00% |
| Klebsiella aerogenes        | Hydrolysis Probe | 82    | 96.85%  | 3.15% | 0.00% | 0.00% |
| Klebsiella pneumoniae       | Sense Primer     | 2.816 | 100.00% | 0.00% | 0.00% | 0.00% |
| Klebsiella pneumoniae       | Antisense Primer | 2.711 | 100.00% | 0.00% | 0.00% | 0.00% |
| Klebsiella pneumoniae       | Hydrolysis Probe | 2.711 | 99.66%  | 0.34% | 0.00% | 0.00% |
| Morganella morganii         | Sense Primer     | 81    | 99.84%  | 0.16% | 0.00% | 0.00% |
| Morganella morganii         | Antisense Primer | 81    | 99.84%  | 0.16% | 0.00% | 0.00% |
| Morganella morganii         | Hydrolysis Probe | 80    | 99.52%  | 0.48% | 0.00% | 0.00% |
| Corynebacterium urealyticum | Sense Primer     | 30    | 100.00% | 0.00% | 0.00% | 0.00% |
| Corynebacterium urealyticum | Antisense Primer | 30    | 100.00% | 0.00% | 0.00% | 0.00% |

| Corynebacterium urealyticum | Hydrolysis Probe | 30    | 100.00% | 0.00% | 0.00% | 0.00% |
|-----------------------------|------------------|-------|---------|-------|-------|-------|
| Enterococcus faecium        | Sense Primer     | 552   | 98.68%  | 1.32% | 0.00% | 0.00% |
| Enterococcus faecium        | Antisense Primer | 555   | 98.68%  | 1.32% | 0.00% | 0.00% |
| Enterococcus faecium        | Hydrolysis Probe | 555   | 98.46%  | 1.54% | 0.00% | 0.00% |
| Enterococcus faecalis       | Sense Primer     | 575   | 100.00% | 0.00% | 0.00% | 0.00% |
| Enterococcus faecalis       | Antisense Primer | 578   | 100.00% | 0.00% | 0.00% | 0.00% |
| Enterococcus faecalis       | Hydrolysis Probe | 578   | 99.89%  | 0.11% | 0.00% | 0.00% |
| Acinetobacter baumannii     | Sense Primer     | 1.703 | 99.35%  | 0.65% | 0.00% | 0.00% |
| Acinetobacter baumannii     | Antisense Primer | 1.701 | 99.89%  | 0.21% | 0.00% | 0.00% |
| Acinetobacter baumannii     | Hydrolysis Probe | 1.701 | 99.47%  | 0.53% | 0.00% | 0.00% |
| Proteus vulgaris            | Sense Primer     | 155   | 99.83%  | 0.17% | 0.00% | 0.00% |
| Proteus vulgaris            | Antisense Primer | 155   | 99.83%  | 0.17% | 0.00% | 0.00% |
| Proteus vulgaris            | Hydrolysis Probe | 157   | 99.85%  | 0.15% | 0.00% | 0.00% |
| Staphylococcus aureus       | Sense Primer     | 2.491 | 99.65%  | 0.35% | 0.00% | 0.00% |
| Staphylococcus aureus       | Antisense Primer | 2.703 | 99.74%  | 0.26% | 0.00% | 0.00% |
| Staphylococcus aureus       | Hydrolysis Probe | 2.703 | 99.62%  | 0.38% | 0.00% | 0.00% |
| Ureplasma                   | Sense Primer     | 90    | 99.90%  | 0.10% | 0.00% | 0.00% |
| Ureplasma                   | Antisense Primer | 90    | 99.90%  | 0.10% | 0.00% | 0.00% |
| Ureplasma                   | Hydrolysis Probe | 88    | 99.90%  | 0.10% | 0.00% | 0.00% |
| Providencia stuartii        | Sense Primer     | 23    | 100.00% | 0.00% | 0.00% | 0.00% |
| Providencia stuartii        | Antisense Primer | 23    | 100.00% | 0.00% | 0.00% | 0.00% |
| Providencia stuartii        | Hydrolysis Probe | 22    | 100.00% | 0.00% | 0.00% | 0.00% |
| Candida auris               | Sense Primer     | 501   | 100,00% | 0,00% | 0.00% | 0.00% |
| Candida auris               | Antisense Primer | 501   | 100,00% | 0,00% | 0.00% | 0.00% |
| Candida auris               | Hydrolysis Probe | 499   | 100,00% | 0,00% | 0.00% | 0.00% |
| Candida krusei              | Sense Primer     | 1.415 | 100%    | 0.00% | 0.00% | 0.00% |
| Candida krusei              | Antisense Primer | 1.415 | 100%    | 0.00% | 0.00% | 0.00% |
| Candida krusei              | Hydrolysis Probe | 1.415 | 100%    | 0.00% | 0.00% | 0.00% |
| Candida albicans            | Sense Primer     | 3.629 | 99.69%  | 0.31% | 0.00% | 0.00% |
| Candida albicans            | Antisense Primer | 3.728 | 98.85%  | 2.25% | 0.00% | 0.00% |
| Candida albicans            | Hydrolysis Probe | 3.728 | 98.52%  | 2.48% | 0.00% | 0.00% |
| Candida parapsilosis        | Sense Primer     | 2.559 | 99.74%  | 0.26% | 0.00% | 0.00% |

| Candida parapsilosis | Antisense Primer | 2.463 | 100%   | 0.00% | 0.00% | 0.00% |
|----------------------|------------------|-------|--------|-------|-------|-------|
| Candida parapsilosis | Hydrolysis Probe | 2.463 | 100%   | 0.00% | 0.00% | 0.00% |
| Candida tropicalis   | Sense Primer     | 1.164 | 98.40% | 2.60% | 0.00% | 0.00% |
| Candida tropicalis   | Antisense Primer | 1.906 | 97.83% | 2.17% | 0.00% | 0.00% |
| Candida tropicalis   | Hydrolysis Probe | 1.906 | 97.12% | 2.88% | 0.00% | 0.00% |
| Candida glabrata     | Sense Primer     | 763   | 100%   | 0.00% | 0.00% | 0.00% |
| Candida glabrata     | Antisense Primer | 1.111 | 99.20% | 0.80% | 0.00% | 0.00% |
| Candida glabrata     | Hydrolysis Probe | 1.111 | 99.64% | 0.36% | 0.00% | 0.00% |

# 10.3.2. Wet-Test Analytical Reactivity

The analytical reactivity (inclusivity) of the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* was demonstrated using a comprehensive panel that represents the temporal, evolutionary, and geographic diversity of each target organism.

Each sample was tested in triplicate with the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* at an initial concentration 3-fold higher than the LoD determined for each analyte. In cases where the expected targets were not detected in one or more replicates, concentrations 3-fold higher were evaluated.

The individual strains and the concentrations at which positive test results were obtained for all three replicates are presented by target organisms in Table 11 below.

**Table 11.** Results of the wet inclusivity test.

| Variant/Type/Subtype/Lineage/Genotype/Species | Isolate ID/Source   | xLoD Detected |
|-----------------------------------------------|---------------------|---------------|
| Escherichia coli                              | ATCC 25922          | 1x            |
| Streptococcus agalactiae                      | ATCC 12386          | 1x            |
| Klebsiella oxytoca                            | ATCC 700324         | 1x            |
| Staphylococcus saprophyticus                  | Zeptometrix 0804014 | 1x            |
| Serratia marcescens                           | ATCC 29021          | 1x            |
| Proteus mirabilis                             | Zeptometrix 0801544 | 1x            |
| Aerococcus urinae                             | ATCC 51268          | 1x            |
| Treponema pallidum                            | In-house            | 1x            |
| Enterobacter cloacae                          | Zeptometrix 0801830 | 1x            |
| Pseudomonas aeruginosa                        | ATCC 27853          | 1x            |
| Citrobacter freundii                          | Zeptometrix 0801563 | 1x            |
| Klebsiella aerogenes                          | ATCC 13048          | 1x            |
| Klebsiella pneumoniae                         | NCTC 13465          | 1x            |

| Morganella morganii         | Zeptometrix 0804010   | 1x |
|-----------------------------|-----------------------|----|
| Corynebacterium urealyticum | ATCC 43044            | 1x |
| Enterococcus faecium        | ATCC BAA-2127         | 1x |
| Enterococcus faecalis       | Zeptometrix 0804216   | 1x |
| Acinetobacter baumannii     | ATCC 19606            | 1x |
| Proteus vulgaris            | Zeptometrix 0810290CF | 1x |
| Staphylococcus aureus       | ATCC 10832            | 1x |
| Ureaplasma urealyticum      | ATCC 27618            | 1x |
| Ureaplasma parvum           | ATCC 27815            | 1x |
| Providencia stuartii        | Zeptometrix 0810452CF | 1x |
| Candida albicans            | ATCC 10231            | 1x |
| Candida glabrata            | ATCC 90030            | 1x |
| Candida parapsilosis        | ATCC 22019            | 1x |
| Candida tropicalis          | ATCC 750              | 1x |
| Candida krusei              | ATCC 2159             | 1x |
| Candida auris               | ATCC MYA-5003         | 1x |

# 10.4. Analytical Specificity (Exclusivity)

# 10.4.1. In-Slico Analytical Specificity

Primers and probes designed for a target sequence may also bind to similar sequences if they closely match or differ by only a few base pairs from a non-targeted sequence. To ensure specificity to the target sequence, it is essential to screen the primers and probes against the reference database for the intended templates, as well as any databases that may contain potential contaminating templates.

**Table 12.** The results of On-Panel and Off-Panel organisms tested for cross-reactivity.

| On Provide Provide | Name of the amountain        |         | Cross Reactivity* |         |
|--------------------|------------------------------|---------|-------------------|---------|
| On-Panel/Off-Panel | Name of the organism         | Forward | Probe             | Reverse |
| On-Panel           | Escherichia coli             | None    | None              | None    |
| On-Panel           | Streptococcus agalactiae     | None    | None              | None    |
| On-Panel           | Klebsiella oxytoca           | None    | None              | None    |
| On-Panel           | Staphylococcus saprophyticus | None    | None              | None    |
| On-Panel           | Serratia marcescens          | None    | None              | None    |
| On-Panel           | Proteus mirabilis            | None    | None              | None    |

MarinaBiolab Urinary Tract Infections Panel PCR Kit

Page **21** of **29** 

| On-Panel  | Aerococcus urinae           | None | None | None |
|-----------|-----------------------------|------|------|------|
| On-Panel  | Treponema pallidum          | None | None | None |
| On-Panel  | Enterobacter cloacae        | None | None | None |
| On-Panel  | Pseudomonas aeruginosa      | None | None | None |
| On-Panel  | Citrobacter freundii        | None | None | None |
| On-Panel  | Klebsiella aerogenes        | None | None | None |
| On-Panel  | Klebsiella pneumoniae       | None | None | None |
| On-Panel  | Morganella morganii         | None | None | None |
| On-Panel  | Corynebacterium urealyticum | None | None | None |
| On-Panel  | Enterococcus faecium        | None | None | None |
| On-Panel  | Enterococcus faecalis       | None | None | None |
| On-Panel  | Acinetobacter baumannii     | None | None | None |
| On-Panel  | Proteus vulgaris            | None | None | None |
| On-Panel  | Staphylococcus aureus       | None | None | None |
| On-Panel  | Ureaplasma urealyticum      | None | None | None |
| On-Panel  | Ureaplasma parvum           | None | None | None |
| On-Panel  | Providencia stuartii        | None | None | None |
| On-Panel  | Candida albicans            | None | None | None |
| On-Panel  | Candida glabrata            | None | None | None |
| On-Panel  | Candida parapsilosis        | None | None | None |
| On-Panel  | Candida tropicalis          | None | None | None |
| On-Panel  | Candida krusei              | None | None | None |
| On-Panel  | Candida auris               | None | None | None |
| Off-Panel | Staphylococcus epidermidis  | None | None | None |
| Off-Panel | Staphylococcus haemolyticus | None | None | None |
| Off-Panel | Staphylococcus lugdunensis  | None | None | None |
| Off-Panel | Streptococcus dysgalactiae  | None | None | None |
| Off-Panel | Streptococcus pyogenes      | None | None | None |
| Off-Panel | Fusarium solani             | None | None | None |
| Off-Panel | Microsporum spp.            | None | None | None |
| Off-Panel | Trichophyton spp.           | None | None | None |
| Off-Panel | Acinetobacter iwoffi        | None | None | None |

| Off-Panel | Acinetobacter nosocomalis     | None | None | None |
|-----------|-------------------------------|------|------|------|
| Off-Panel | Stenotrophomonas maltophilia  | None | None | None |
| Off-Panel | Moraxella catarrhalis         | None | None | None |
| Off-Panel | Pasteurella stomatis          | None | None | None |
| Off-Panel | Epidermophyton floccosum      | None | None | None |
| Off-Panel | Finegoldia magna              | None | None | None |
| Off-Panel | Bartonella henselae           | None | None | None |
| Off-Panel | Haemophilus influenzae        | None | None | None |
| Off-Panel | Candida sojae                 | None | None | None |
| Off-Panel | Candida oregonensis           | None | None | None |
| Off-Panel | Malessezia restricta          | None | None | None |
| Off-Panel | Peptoniphilus harei           | None | None | None |
| Off-Panel | Peptoniphilus ivorii          | None | None | None |
| Off-Panel | Peptostreptococcus prevotii   | None | None | None |
| Off-Panel | Peptostreptococcus anaerobius | None | None | None |
| Off-Panel | Listeria monocytogenes        | None | None | None |
| Off-Panel | Candida lusitaniae            | None | None | None |
| Off-Panel | Kingella kingae               | None | None | None |
| Off-Panel | Chlamydia trachomatis         | None | None | None |
| Off-Panel | Legionella dumoffii           | None | None | None |
| Off-Panel | Corynebacterium diphtheriae   | None | None | None |
| Off-Panel | Neisseria meningitidis        | None | None | None |
|           |                               |      |      |      |

<sup>\*</sup> Homology should be <80% between the cross-reactivity microorganisms and the test primers/ probe(s).

# 10.4.2. Wet-Test Analytical Specificity

The potential for non-specific amplification by assays designed to detect analytes was evaluated by testing high concentrations of organisms or nucleic acids using the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*. On-panel organisms were tested to assess potential intra-panel cross-reactivity, while off-panel organisms were tested to evaluate the specificity of the panel. Off-panel organisms included normal flora, pathogens that may be present in specimens, and genetically related species to those detected by the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*. The concentration of organisms tested (in triplicate) was at least 1.0E+06 CFU/mL for bacteria, fungi, and parasites, and at least 1.0E+05 units/mL for viruses. For certain organisms that were not available for laboratory testing, in silico analysis of the organism's whole genome sequences was used. The on-panel and off-panel organisms tested are listed in Table 13 and Table 14.

MarinaBiolab Urinary Tract Infections Panel PCR Kit

Table 13. On-Panel organisms tested for evaluation of *MarinaBiolab Urinary Tract Infections Panel PCR Kit* analytical specificity.

| Organism                     | Isolate ID/Source     | Cross Reactivity Detected |
|------------------------------|-----------------------|---------------------------|
| Escherichia coli             | ATCC 25922            | None                      |
| Streptococcus agalactiae     | ATCC 12386            | None                      |
| Klebsiella oxytoca           | ATCC 700324           | None                      |
| Staphylococcus saprophyticus | Zeptometrix 0804014   | None                      |
| Serratia marcescens          | ATCC 29021            | None                      |
| Proteus mirabilis            | Zeptometrix 0801544   | None                      |
| Aerococcus urinae            | ATCC 51268            | None                      |
| Treponema pallidum           | In-house              | None                      |
| Enterobacter cloacae         | Zeptometrix 0801830   | None                      |
| Pseudomonas aeruginosa       | ATCC 27853            | None                      |
| Citrobacter freundii         | Zeptometrix 0801563   | None                      |
| Klebsiella aerogenes         | ATCC 13048            | None                      |
| Klebsiella pneumoniae        | NCTC 13465            | None                      |
| Morganella morganii          | Zeptometrix 0804010   | None                      |
| Corynebacterium urealyticum  | ATCC 43044            | None                      |
| Enterococcus faecium         | ATCC BAA-2127         | None                      |
| Enterococcus faecalis        | Zeptometrix 0804216   | None                      |
| Acinetobacter baumannii      | ATCC 19606            | None                      |
| Proteus vulgaris             | Zeptometrix 0810290CF | None                      |
| Staphylococcus aureus        | ATCC 10832            | None                      |
| Ureaplasma urealyticum       | ATCC 27618            | None                      |
| Ureaplasma parvum            | ATCC 27815            | None                      |
| Providencia stuartii         | Zeptometrix 0810452CF | None                      |
| Candida albicans             | ATCC 10231            | None                      |
| Candida glabrata             | ATCC 90030            | None                      |
| Candida parapsilosis         | ATCC 22019            | None                      |
| Candida tropicalis           | ATCC 750              | None                      |
| Candida krusei               | ATCC 2159             | None                      |
| Candida auris                | ATCC MYA-5003         | None                      |

**Table 14.** Off-Panel organisms were tested for evaluation of *MarinaBiolab Urinary Tract Infections Panel PCR Kit* analytical specificity.

| Organism                     | Isolate ID/Source        | Cross Reactivity Detected |  |
|------------------------------|--------------------------|---------------------------|--|
| Acinetobacter calcoaceticus  | ATCC 23055 None          |                           |  |
| Staphylococcus epidermidis   | Zeptometrix 0804281      | None                      |  |
| Staphylococcus haemolyticus  | Zeptometrix 0801591      | None                      |  |
| Staphylococcus lugdunensis   | Zeptometrix 0801555      | None                      |  |
| Streptococcus dysgalactiae   | Zeptometrix 0801516      | None                      |  |
| Streptococcus pyogenes       | Zeptometrix 0801512      | None                      |  |
| Fusarium solani              | Zeptometrix 0801806      | None                      |  |
| Acinetobacter iwoffi         | Zeptometrix 0801909      | None                      |  |
| Stenotrophomonas maltophilia | Zeptometrix 0801569      | None                      |  |
| Moraxella catarrhalis        | Zeptometrix 0801509      | None                      |  |
| Candida sojae                | Zeptometrix 0801825      | None                      |  |
| Listeria monocytogenes       | Zeptometrix 0804339      | None                      |  |
| Chlamydia trachomatis        | Zeptometrix 0801775      | None                      |  |
| Acinetobacter baumannii      | ATCC 19606               | None                      |  |
| Legionella pneumophilia      | Zeptometrix 0801530 None |                           |  |
| Neisseria gonorrhoeae        | ATCC 19424               | None                      |  |
| Neisseria meningitidis       | ATCC 13090               | None                      |  |
| Aspergillus flavus           | Zeptometrix 0801598      | None                      |  |

#### 10.5. Interferences

The potential for endogenous or exogenous substances, which may be present in research samples or introduced during sample collection and handling, to interfere with the accurate detection of analytes was evaluated through select direct testing on the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*. The findings were extrapolated from the interference evaluation of the kit.

Potentially interfering substances were evaluated using contrived samples spiked with the substance of interest. Results from samples containing the substance were compared to those from control samples without the substance. The substances tested included endogenous compounds that may be present in samples at normal or elevated levels (e.g., blood, mucus/mucin, human genomic DNA), various commensal or infectious microorganisms, medications, washes or topical applications, swabs and transport media used for sample collection, and substances employed to clean, decontaminate, or disinfect work areas. Each substance was added to contrived samples containing representative organisms at concentrations near (3x) the LoD. The concentration of each substance added to the samples was equal to or greater than the highest level expected in research samples, and each sample was tested in triplicate.

None of the substances tested were found to interfere with the MarinaBiolab Urinary Tract Infections Panel PCR Kit.

Table 15. Evaluation of potentially interfering substances on the MarinaBiolab Urinary Tract Infections Panel PCR Kit.

| Substance Tested             | Concentration Tested       | Observed Interference |  |  |
|------------------------------|----------------------------|-----------------------|--|--|
| Endogenous Substances        |                            |                       |  |  |
| Whole Blood                  | 10% v/v                    | No Interference       |  |  |
| Human serum                  | 5% v/v                     | No Interference       |  |  |
| Human Urine                  | -                          | No Interference       |  |  |
|                              | Competitive Microorganisms |                       |  |  |
| Escherichia coli             | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Streptococcus agalactiae     | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Klebsiella oxytoca           | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Staphylococcus saprophyticus | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Serratia marcescens          | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Proteus mirabilis            | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Aerococcus urinae            | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Treponema pallidum           | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Enterobacter cloacae         | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Pseudomonas aeruginosa       | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Citrobacter freundii         | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Klebsiella aerogenes         | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Klebsiella pneumoniae        | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Morganella morganii          | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Corynebacterium urealyticum  | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Enterococcus faecium         | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Enterococcus faecalis        | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Acinetobacter baumannii      | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Proteus vulgaris             | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Staphylococcus aureus        | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Ureaplasma urealyticum       | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Ureaplasma parvum            | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Providencia stuartii         | 1.0E+06 CFU/mL             | No Interference       |  |  |
| Candida albicans             | 1.0E+06 CFU/mL             | No Interference       |  |  |

| Candida glabrata                                                                                  | 1.0E+06 CFU/mL | No Interference |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------|-----------------|--|--|--|
| Candida parapsilosis                                                                              | 1.0E+06 CFU/mL | No Interference |  |  |  |
| Candida tropicalis                                                                                | 1.0E+06 CFU/mL | No Interference |  |  |  |
| Candida krusei                                                                                    | 1.0E+06 CFU/mL | No Interference |  |  |  |
| Candida auris                                                                                     | 1.0E+06 CFU/mL | No Interference |  |  |  |
| Exogenous Substances                                                                              |                |                 |  |  |  |
| Feminine Spray/talcum powder                                                                      | 5% v/v         | No Interference |  |  |  |
| Phenazopyridine Hydrochloride (Pyridium)                                                          | 10 μg/mL       | No Interference |  |  |  |
| Ascorbic acid                                                                                     | 0.6 mmol/L     | No Interference |  |  |  |
| High pH                                                                                           | pH = 8.0       | No Interference |  |  |  |
| Low pH                                                                                            | pH = 4.0       | No Interference |  |  |  |
| Antibiotic Pool Amoxicillin trihydrate Metronidazole Tetracycline Hydrochloride Sodium Cefotaxime | 1 mg/mL (Each) | No Interference |  |  |  |
| Specimen Collection Materials                                                                     |                |                 |  |  |  |
| Urine Tubes (BD Vacutainer® 364992)                                                               | N/A            | No Interference |  |  |  |
| Starplex™ Scientific Urine Preservative Tube<br>(22046414)                                        | N/A            | No Interference |  |  |  |

# 11. TROUBLESHOOTING

| Problem                                                                                                                 | Cause                                                                                                                                                                                                                                                                     | Solution                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Target-specific and/or internal control (IC) signals were detected in the Negative Control well.                        | Contamination may arise from the environment, contamination of extraction and/or qPCR reagents, or well-to-well cross-contamination. The signal observed is not true target amplification, but rather background curves generated by the software of the qPCR instrument. | Repeat the qPCR using fresh reagents. Follow the general GLP guidelines in a PCR lab (e.g., decontaminate all surfaces and instruments with sodium hypochlorite or ethanol, and ensure filter tips are used and changed between samples). |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                           | It is recommended to set up the qPCR reactions in<br>a separate area, where no RNA/DNA is handled, and<br>with equipment designated solely for pre-PCR<br>activities.                                                                     |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                           | Ignore the Cq value of the No Template Control (NTC) if the amplification curve appears to be background noise rather than a true signal. If the issue persists, contact Technical Support.                                               |  |
| No IC signal is detected, but a target-specific signal is observed in the sample wells.                                 | A high copy number of target nucleic acid in the samples leads to preferential amplification of the target-specific nucleic acid.                                                                                                                                         | No action is required. The result is considered positive.                                                                                                                                                                                 |  |
| The Positive Control did not meet the criteria for acceptable values specified by the kit, rendering the assay invalid. | The Positive Control was not stored under the recommended conditions.                                                                                                                                                                                                     | Check the kit label for the recommended storage conditions and expiration date.                                                                                                                                                           |  |
|                                                                                                                         | The kit has expired.                                                                                                                                                                                                                                                      | Replace the Positive Control. If necessary, use a new kit.                                                                                                                                                                                |  |
| High Cq values were observed in the repeated samples.                                                                   | The frozen samples were not mixed properly after thawing.                                                                                                                                                                                                                 | Ensure frozen samples are thawed with mild agitation to guarantee thorough mixing.                                                                                                                                                        |  |
|                                                                                                                         | Nucleic acids may be degraded.                                                                                                                                                                                                                                            | Make sure samples are stored correctly and are not subjected to multiple freeze-thaw cycles.                                                                                                                                              |  |
| Target-specific and/or IC signals were detected after 35 cycles in the Positive Control.                                | Incorrect qPCR set-up or the kit reagents may have been compromised (e.g., improper storage or more than 15 freeze-thaw cycles).                                                                                                                                          | Replace the control. If the problem persists, contact Technical Support.                                                                                                                                                                  |  |
| No target-specific or IC signals were detected in the sample wells.                                                     | Sampling, extraction, or inhibition problem.                                                                                                                                                                                                                              | Dilute the nucleic acid isolate 1:10 and repeat the qPCR. If the diluted sample does not show a positive result in the IC channel, request a new sample and repeat the nucleic acid extraction.                                           |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                           | If necessary, repeat the nucleic acid extraction and the qPCR.                                                                                                                                                                            |  |
|                                                                                                                         |                                                                                                                                                                                                                                                                           | If the issue persists, request a new sample, repeat<br>the nucleic acid extraction and qPCR. If the problem<br>continues, contact Technical Support.                                                                                      |  |

MarinaBiolab Urinary Tract Infections Panel PCR Kit

#### 12. EXPLANATION of SYMBOLS

| Symbol       | Title of Symbol                       | Symbol                 | Title of Symbol                                                         |
|--------------|---------------------------------------|------------------------|-------------------------------------------------------------------------|
| RUO          | Research Use Only                     |                        | Use-by date                                                             |
| <b>~</b>     | Manufacturer                          | LOT                    | Batch code                                                              |
| CONTROL -    | Negative control                      | NOM<br>STERILE         | Non-sterile                                                             |
| CONTROL +    | Positive control                      | $\widehat{\mathbf{i}}$ | Consult instructions for use or consult electronic instructions for use |
| CONTROL      | Control                               | $\triangle$            | Caution                                                                 |
| *            | Temperature limit                     | REF                    | Catalogue number                                                        |
| *            | Keep away from sunlight               |                        | Do not use if package is damaged and consult instructions for use       |
| <del>*</del> | Keep dry                              | <u>11</u>              | Keep upright                                                            |
| Σ            | Contains sufficient for <n> tests</n> | <b>ॐ</b>               | Protect from heat and radioactive sources                               |

# Custom care and technical support

Tel: +1 510 579-5802

e-mail customer care: <a href="mailto:accounting@marinabiolab.com">accounting@marinabiolab.com</a>

e-mail Technical Support: rd@marinabiolab.com



MarinaBiolab LLC.

Address: 715 Discovery Blvd, suite 309 Cedar Park, TX 78613

For research use only (RUO)! Not for use in diagnostic procedures.

© 2025 MarinaBiolab LLC.; all rights reserved.