

INSTRUCTION FOR USE

Urinary Tract Infections Panel PCR Kit

For Research Use Only

100

MBLUTI004

06 2024

Hürriyet Mah. Erler Sok. No: 4/1 B Blok Nexus No: 13, Kartal/Istanbul-TURKEY

Document Revision History

Rev.No_Date	Revision Description
Rev.00_June 20, 2024	First Release

CONTENTS

1.	INTENDE	ED USE		3
2.	PRINCIP	LE of the PR	OCEDURE	2
3.	KIT COM	IPONENTS		Ę
4.	EQUIPM	ENT and MA	TERIALS REQUIRED but NOT PROVIDED	7
5.	WARNIN	G and PRECA	AUTIONS	8
6.	HANDLIN	NG, STORAGI	E, and STABILITY	g
7.	TEST PR	OCEDURE		10
	7.1.	Sample Pr	reparation and Nucleic Acid Extraction	10
	7.2.	PCR React	tion Preparation and Processing	10
8.	INTERPR	RETATION OF	RESULTS	12
	8.1.	Calculation	n of Cq Values and Instrument-Specific Requirements	12
	8.2.	Overall Val	lidity of Detection	12
	8.3.	Interpretat	tion of Unknown Specimen Results	13
9.	ASSAY L	IMITATIONS		14
10.	PERFORI	MANCE CHAI	RACTERISTICS	15
	10.1.	Analytical S	Sensitivity (Limit of Detection, LoD)	15
	10.2.	Device Equ	uivalence Study	16
	10.3.	Analytical I	Reactivity (Inclusivity)	17
		10.3.1.	In-Slico Analytical Reactivity	17
		10.3.2.	Wet-Test Analytical Reactivity	20
	10.4.	Analytical S	Specificity (Exclusivity)	21
		10.4.1.	In-Slico Analytical Specificity	21
		10.4.2.	Wet-Test Analytical Specificity	23
	10.5.	Interference	ces	25
11.	TROUBL	ESHOOTING		28
12.	EXPLAN	ATION of SYI	MBOLS	29

1. INTENDED USE

For Research Use Only (RUO). Not for use in diagnostic procedures. No claim or representation is intended to provide information for the diagnosis, prevention, or treatment of disease. Furthermore, the test kit is not intended to diagnose infectious animal diseases.

The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* is a multiplexed qualitative Real-Time Polymerase Chain Reaction (qPCR) test intended for the simultaneous detection and identification of multiple pathogenic nucleic acids in research samples. The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* allows to achieve qPCR result in less than 1 hour. The test is performed to detect gene sequences of the following organisms.

Targets				
Escherichia coli	Corynebacterium urealyticum			
Streptococcus agalactiae	Enterococcus faecium			
Klebsiella oxytoca	Enterococcus faecalis			
Staphylococcus saprophyticus	Acinetobacter baumannii			
Serratia marcescens	Proteus vulgaris			
Proteus mirabilis	Staphylococcus aureus			
Aerococcus urinae	Ureplasma (Ureaplasma urealyticum/parvum)			
Treponema pallidum	Providencia stuartii			
Enterobacter cloacae	Candida albicans			
Pseudomonas aeruginosa	Candida glabrata			
Citrobacter freundii	Candida parapsilosis			
Klebsiella aerogenes	Candida tropicalis			
Klebsiella pneumoniae	Candida krusei			
Morganella morganii	Candida auris			
Controls				
Human RNase P (IC)				
Bacillus atrophaeus (EC)				

2. PRINCIPLE of the PROCEDURE

DNA target regions are amplified via real-time PCR instruments using the primer and probe sets in the kit. In the process, the probe anneals a specific target sequence located between the forward and reverse primers. During the extension phase of the PCR cycle, the 5' nuclease activity of Taq polymerase degrades the probe, causing the reporter dye to separate from the quencher, generating a fluorescent signal. With each cycle, additional reporter dye molecules are cleaved from their respective probes, increasing the fluorescence intensity. Fluorescence intensity is monitored at each PCR cycle by the real-time PCR instruments. Probes labeled with different fluorophores are used to detect specific amplicons originating from targets and Internal Control.

PCR instruments measure these signals at the end of each amplification cycle in real time and interpret the data to provide a qualitative result for each of the above targets. A positive result for the detection of target DNA is indicated by the presence of a real-time PCR growth curve and an associated Cq (Quantification Cycle) value.

MarinaBiolab Urinary Tract Infections Panel PCR Kit

Page 4 of 29

3. KIT COMPONENTS

The MarinaBiolab Urinary Tract Infections Panel PCR Kit consists of four main components:

- 1. qPCR Enzyme and Buffer Mix (qPCR Master Mix)
- 2. Forward, Reverse and Probe Oligo Mix (UTIP Oligo Mix 1-8)
- 3. Mix of non-infectious DNA from artificial sample including targets in the table below (PC-UTIP)
- 4. DNase/RNase-Free Water (NTC)

The kit components are provided in Table 1-2.

Table 1. Kit components.

		Quantity x Volume	
Component	Description	100 rxn MBLUTI004	
qPCR Master Mix	Ready-to-use mix for qPCR	4 x 1000 μL	
UTIP Oligo Mix 1-8	Primers and probes complementary to specific regions of the targets in the table above	8 x 250 μL	
PC-UTIP	Mix of non-infectious DNA from artificial sample including targets in the table above	2 x 400 μL	
NTC	DNase/RNase-Free Water	2 x 400 μL	

Table 2. Oligo Mix target organisms and detection channels.

Vial Name	Target	Channel
	Escherichia coli	FAM/Green
IITID Olina Min 4	Streptococcus agalactiae	HEX/VIC/JOE/Yellow
UTIP Oligo Mix 1	Klebsiella oxytoca	ROX/Texas Red/Orange
	Human RNase P (IC)	CY5/Red
	Staphylococcus saprophyticus	FAM/Green
IITID Olivo Miv 2	Serratia marcescens	HEX/VIC/JOE/Yellow
UTIP Oligo Mix 2	Proteus mirabilis	ROX/Texas Red/Orange
	Aerococcus urinae	CY5/Red
	Treponema pallidum	FAM/Green
IITID Olivo Miv 2	Enterobacter cloacae	HEX/VIC/JOE/Yellow
UTIP Oligo Mix 3	Pseudomonas aeruginosa	ROX/Texas Red/Orange
	Citrobacter freundii	CY5/Red

	Klebsiella aerogenes	FAM/Green			
UTID OF Min 4	Klebsiella pneumoniae	HEX/VIC/JOE/Yellow			
UTIP Oligo Mix 4	Morganella morganii	ROX/Texas Red/Orange			
	Corynebacterium urealyticum	CY5/Red			
	Enterococcus faecium	FAM/Green			
UTID OF THE P	Enterococcus faecalis	HEX/VIC/JOE/Yellow			
UTIP Oligo Mix 5	Acinetobacter baumannii	ROX/Texas Red/Orange			
	Proteus vulgaris	CY5/Red			
	Staphylococcus aureus	FAM/Green			
IITID Olive Min C	-	HEX/VIC/JOE/Yellow			
UTIP Oligo Mix 6	Ureplasma (Ureaplasma urealyticum/parvum)	ROX/Texas Red/Orange			
	-	CY5/Red			
	Candida albicans	FAM/Green			
UTIP Oligo Mix 7	Candida glabrata	HEX/VIC/JOE/Yellow			
OTTP OTIGO MIX 7	Candida parapsilosis	ROX/Texas Red/Orange			
	Providencia stuartii	CY5/Red			
	Candida tropicalis	FAM/Green			
UTID Oligo Miv 9	Candida krusei	HEX/VIC/JOE/Yellow			
UTIP Oligo Mix 8	Candida auris	ROX/Texas Red/Orange			
	Bacillus atrophaeus (EC)	CY5/Red			

The oligonucleotide set targeting the human *RNase P* mRNA (Internal Control: IC) and *Bacillus atrophaeus* (External Control: EC) are used to monitor sampling, nucleic acid extraction, and inhibition of qPCR. The kit also contains negative and positive control templates for evaluating the contamination and the qPCR reagent stability, respectively.

4. EQUIPMENT and MATERIALS REQUIRED but NOT PROVIDED

- 2-8°C Refrigerator
- ≤ -20°C Freezer
- ≤ -70°C Freezer (Optional)
- Vortex mixer
- Benchtop centrifuge with rotor for 1.5 mL tubes
- Benchtop mini centrifuge with rotor for PCR strips
- Benchtop plate centrifuge
- Biological Safety Cabinet (BSC)
- PCR cabinet for PCR Setup
- Adjustable Micropipettes: 1-10, 10-100, 100-1000 μL
- Sterile DNase/RNase free micropipettes tips Compatible with the micropipettes
- Cold tube rack for microfuge tubes (1.5/2 mL) and for PCR tubes (0.1/0.2 mL)
- Disposable, powder-free, nitrile gloves
- Disposable (preferably) laboratory coat
- Surface decontaminants Freshly diluted 10% bleach solution (0.5% NaClO)
- Applied Biosystems QuantStudio 5, 7, and 12K with Design & Analysis software and consumables
- Bio-Rad CFX96 Touch™/CFX96™ Dx/CFX Opus 96™/CFX Opus 96™ Dx/CFX384 Touch™/CFX Opus 384™ with Maestro software v1.1 and consumables
- Qiagen Rotor-Gene Q 5plex Platform with Rotor-Gene Q series software v2.1.0.9 and consumables
- Roche LightCycler 480 with software and consumables

5. WARNING and PRECAUTIONS

- The MarinaBiolab Urinary Tract Infections Panel PCR Kit is designed for research use only and should be used by
 professionally trained, qualified staff only. All work should be performed using Good Laboratory Practices.
- Biological material used for extraction of nucleic acid should be handled as potentially infectious. When handling biological
 material appropriate safety precautions are recommended (do not pipet by mouth; wear disposable gloves while handling
 biological material and performing the test; disinfect hands when finished the test).
- Biological material should be inactivated before disposal (e.g., in an autoclave). Disposables should be autoclaved or
 incinerated after use.
- Spillage of potentially infectious materials should be removed immediately with absorbent paper tissue and the contaminated
 areas swabbed with a suitable standard disinfectant or 70% alcohol. Material used to clean spills, including gloves, should
 be inactivated before disposal (e.g., in an autoclave).
- Disposal of all samples, unused reagents and waste should be in accordance with country, federal, state, and local regulations.
- Microbial contamination of the reagents while taking aliquots should be avoided. It is recommended to use sterile one-way
 pipettes and tips. Reagents that look cloudy or show any signs of microbial contamination must not be used.
- The kit should be stored away from nucleic acid sources and qPCR amplicons.
- Always check the expiration date on the kit. Do not use expired or incorrectly stored kit.
- The components in the kit should not be mixed with components with different lot numbers or chemicals of the same name but from different manufacturers.
- Kit components should be mixed by gently shaking before use.
- A common concern with PCR-based assays is false positive results caused by contamination of the work area with PCR
 amplicon. To prevent amplicon contamination:
 - o It shall be ensured that separate work areas with their own apparatus are available.
 - Do not open the reaction tubes/plates post amplification to avoid contamination with amplicons.
 - o Discard used tubes/plates in a biohazard container immediately after the run has completed.
 - Avoid excessive handling of tubes/plates after test runs.
 - Change gloves after handling a used tubes/plate.

6. HANDLING, STORAGE, and STABILITY

- The *MarinaBiolab Urinary Tract Infections Panel PCR Kit* is shipped on dry ice. If any component except qPCR Master Mix of the kit is not frozen on arrival, or if the outer packaging has been compromised during shipment, please contact *MarinaBiolab* or the local distributors as soon as possible.
- All components should be stored between -25°C and -15°C upon arrival.
- Repeated freezing and thawing of the kit components may result in lower detection quality. The kit can undergo up to 15 freeze/thaw cycles without affecting performance.
- When stored under the specified storage conditions, the kit is stable until the stated expiration date printed on the package.
 The expiration date of the kit is 12 months from date of manufacture.
- All components must be thawed at ambient temperature for a minimum of 30 minutes before use.
- It is recommended that all components should be kept on ice when setting up the assay mixes.
- The primer and probe mixes contain fluorophore labeled probes and should be protected from direct sunlight or long-term ambient light.
- Do not use expired or incorrectly stored components.

7. TEST PROCEDURE

7.1. Sample Preparation and Nucleic Acid Extraction

The sample material for the isolation of nucleic acid must be sent in appropriate cell collection systems. The performance of the kit strongly depends on the amount and quality of the extracted nucleic acid. It must be ensured that the system used for nucleic acid extraction is compatible with real-time PCR technology.

If the established standard method of the lab is used for nucleic acid isolation, it must be validated by the user.

For frozen samples or frozen extracted nucleic acid, only thaw the number of specimen extracts that will be tested in a single day.

Do not freeze/thaw extracted nucleic acid more than once before testing as each freeze/thaw cycle can decrease the nucleic acid quality. For optimal results, use it directly.

7.2. PCR Reaction Preparation and Processing

- Completely thaw the components at room temperature for a minimum of 30 minutes before each use.
- Place all components on ice once thawed during the whole test procedure.
- Determine the number of reactions and create the PCR plate plan.
- Include the following reactions to the plan:
 - Reactions for each test sample and extraction negative control.
 - PCR control reactions:
 - Positive Control (included in the kit)
 - Negative (No Template) Control (NTC) (included in the kit)
 - No Template Addition Control (NRC)
- Vortex and spin down briefly the components before each use.
- Combine the following components for the number of reactions required plus 10% overage to compensate for pipetting errors:

Table 3. Reaction set-up.

Reaction Mix Component	1Χ Reaction (μL) per well	
qPCR Master Mix	5 μL	
UTIP Oligo Mix 1-8	2.5 μL	
Template Nucleic Acid	2.5 μL	
Total Reaction Volume	10 μL	

- Add 5 μL of qPCR Master Mix and 2.5 μL of UTIP Oligo Mix 1-8 into PCR tubes.
- Add 2.5 µL of the isolated sample into the individual tubes.
- The final reaction mix volume is 10 μL.
- Close the tubes, centrifuge briefly, insert tubes into the real-time PCR instrument and amplify according to the following PCR profile.

For Research Use Only Rev.00 June 20, 2024

 Table 4. Amplification profile.

Step	Number of Cycles	Temperature	Time	Data Collection
Initial Denaturation	1	95 °C	10 sec	FAM/Green,
Denaturation	40	95 °C	5 sec	HEX/VIC/JOE/Yellow, ROX/Texas Red/Orange,
Annealing/Extension	40	55 °C	15 sec	CY5/Red

8. INTERPRETATION OF RESULTS

MarinaBiolab Urinary Tract Infections Panel PCR Kit provides a qualitative result for the presence (Detected) or absence (Not Detected) of the target genes.

8.1. Calculation of Cq Values and Instrument-Specific Requirements

Perform the following instrument settings before evaluating the results.

Table 5. Instrument-specific requirements before evaluating the results.

Instrument	Threshold Level	Other Settings
CFX96 Touch™/CFX96™ Dx/CFX Opus 96™/CFX Opus 96™ Dx/ CFX384 Touch™/CFX Opus 384™ (Bio-Rad)	500 RFU	-
Rotor-Gene Q 5plex Platform (QIAGEN)	0.02 RFU	Dynamic Tube: Active Slope Correct: Active Outlier Removal: 0
QuantStudio™ 5, 7 and 12K (Applied Biosystems™)	Auto	-
Roche LightCycler 480 (Roche)	Auto	-

The shape of the amplification curves should be examined. If a Cq value is assigned to a sample by the instruments' software and the curve is sigmoidal, the Cq value can be used in the final evaluation. *Non-sigmoidal curves should be recorded as negative*.

The result is recorded as positive if Cq≤38 or as established by your lab.

8.2. Overall Validity of Detection

Table 6. Expected performance of controls.

Control Time	Used to Monitor	Signal		
Control Type	used to Monitor	Target Channel	Internal/External Control Channel	
Negative Control	Cross-contamination during extraction and reaction setup	-	-	
No template addition	Reagent and/or environmental contamination	-	-	
Positive Control	qPCR reaction setup and reagent integrity	+	+	
Internal/External Control	To monitor the integrity of nucleic acid extraction and qPCR from each specimen	Not applicable	+	

Before analyzing samples results, we recommend verifying if the real-time PCR test is valid. Thus, for each run, please confirm if the results for Positive and Negative controls performed as expected, according to the following criteria:

MarinaBiolab Urinary Tract Infections Panel PCR Kit

Page 12 of 29

 Table 7. Run validity/positive and negative control pass criteria.

Positive	Positive Control Negative Control				
Target Channel	Internal/External Control Channel	Target Channel	Internal/External Control Channel	Results	Recommendation
+	+	-	-	VALID	Continue to result interpretation of samples.
Any of them	Any of them is Negative		nsidered	INVALID	Contact the manufacturer, renew the reagents, and repeat the reaction.
Not considered		Any of then	n is Positive	INVALID	Repeat analysis, paying attention to "Warnings and Precautions" in IFU.

If any control does not perform as described above, the run is considered invalid, and the test is repeated. If the problem persists, contact the manufacturer.

If all the controls are valid, proceed to the interpretation of the results.

8.3. Interpretation of Unknown Specimen Results

The data produced by the instruments can manually be evaluated and reported using their software.

 Table 8. Interpretation of unknown specimen results for DNA pathogens.

DNA Pathogens	Internal Control (RNase P)	External Control (Bacillus atrophaeus)	Results	Interpretation
Positive (+) (Cq<38)	Positive (+) (Cq<38)	Positive (+) (Cq<38)	Positive for Target	Target DNA is detected
Positive (+) (Cq<38)	Negative (-) (Cq≥38 or N/A)	Positive (+) (Cq<38)	Positive for Target	Target DNA is detected
Positive (+) (Cq<38)	Negative (-) (Cq≥38 or N/A)	Negative (-) (Cq≥38 or N/A)	Invalid	Repeat test by re-extracting the sample. If the repeat result remains invalid, consider collecting a new sample.
Positive (+) (Cq<38)	Positive (+) (Cq<38)	Negative (-) (Cq≥38 or N/A)	Invalid	Repeat test by re-extracting the sample. If the repeat result remains invalid, consider collecting a new sample.
Negative (-) (Cq≥38 or N/A)	Positive (+) (Cq<38)	Positive (+) (Cq<38)	Negative for Target	Target DNA is not detected
Negative (-) (Cq≥38 or N/A)	Negative (-) (Cq≥38 or N/A)	Positive (+) (Cq<38)	Negative for Target	Target DNA is not detected
Negative (-) (Cq≥38 or N/A)	Negative (-) (Cq≥38 or N/A)	Negative (-) (Cq≥38 or N/A)	Invalid	Repeat test by re-extracting the sample. If the repeat result remains invalid, consider collecting a new sample.
Negative (-) (Cq≥38 or N/A)	Positive (+) (Cq<38)	Negative (-) (Cq≥38 or N/A)	Invalid	Repeat test by re-extracting the sample. If the repeat result remains invalid, consider collecting a new sample.

9. ASSAY LIMITATIONS

- The MarinaBiolab Urinary Tract Infections Panel PCR Kit is intended for use by professionally trained, qualified staff only.
- A false negative result may occur if a specimen is improperly collected, transported, or handled. False negative results may
 also occur if amplification inhibitors are present in the specimen or if inadequate numbers of organisms are present in the
 specimen.
- Spontaneous mutations within the target sequences may result in failure to detect the target sequence. While this risk is
 mitigated in the test's design, if failure to detect the target is expected it is recommended to test the specimen with a
 different test that detects different target sequences from the target's genome.
- There is a risk of false positive results due to cross-contamination by target viruses and/or bacteria, their nucleic acids or amplified product, or from non-specific signals in the assay. Attention should be given to the handling of consumables under the Warnings and Precautions section to help minimize this risk.
- This assay is a qualitative test and does not provide a quantitative assessment of the concentration of the detected organism.
- All instruments (e.g., pipettes, real-time cyclers) must be calibrated according to the manufacturer's instructions.

armabiolab Utiliary Tract Infections Faller For Kit

For Research Use Only

Page 14 of 29

10. PERFORMANCE CHARACTERISTICS

10.1. Analytical Sensitivity (Limit of Detection, LoD)

The LoD was defined as the concentration at which the test produces a positive result >95% of the time. Serial dilutions of the strains were tested and the initial tentative LoD confirmed with twenty (20) replicates. To ensure the accuracy of the LoD determination, if the initial detection rate was 100%, a further twenty (20) replicates were performed at the next lower concentration until ≤95% was achieved. For nucleic acid extraction, simulated research matrix was spiked with strains and loaded onto the Automatic Nucleic Acids Extraction Instrument. The tests were carried out using the CFX96 Touch™ (Bio-Rad) Real-Time PCR system. The confirmed LoDs for the strains tested and the corresponding LoDs for the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* reportable targets are shown in Table 9 below.

Table 9. Summary of LoD study results.

Analyte	Isolate ID/Source	LoD Concentration (copies/mL)	Detected/Total
Escherichia coli	ATCC 25922	3.5E+01 copies/mL	20/20 100%
Streptococcus agalactiae	ATCC 12386	6.7E+01 copies/mL	19/20 95%
Klebsiella oxytoca	ATCC 700324	2.6E+01 copies/mL	20/20 100%
Staphylococcus saprophyticus	Zeptometrix 0804014	5.7E+01 copies/mL	20/20 100%
Serratia marcescens	ATCC 29021	2.1E+02 copies/mL	20/20 100%
Proteus mirabilis	Zeptometrix 0801544	2.1E+02 copies/mL	20/20 100%
Aerococcus urinae	ATCC 51268	4.5E+01 copies/mL	20/20 100%
Treponema pallidum	ATCC BAA-2642SD	1.8E+07 copies/mL	20/20 100%
Enterobacter cloacae	Zeptometrix 0801830	7.4E+01 copies/mL	19/20 95%
Pseudomonas aeruginosa	ATCC 27853	6.7E+02 copies/mL	20/20 100%
Citrobacter freundii	Zeptometrix 0801563	4.2E+01 copies/mL	20/20 100%
Klebsiella aerogenes	ATCC 13048	2.4E+02 copies/mL	20/20 100%
Klebsiella pneumoniae	NCTC 13465	3.0E+01 copies/mL	20/20 100%

Morganella morganii	Zeptometrix 0804010	4.8E+01 copies/mL	20/20 100%
Corynebacterium urealyticum	ATCC 43044	4.1E+01 copies/mL	20/20 100%
Enterococcus faecium	ATCC BAA-2127	4.5E+01 copies/mL	20/20 100%
Enterococcus faecalis	Zeptometrix 0804216	3.6E+02 copies/mL	20/20 100%
Acinetobacter baumannii	ATCC 19606	1.7E+02 copies/mL	20/20 100%
Proteus vulgaris	Zeptometrix 0810290CF	1.5E+02 copies/mL	20/20 100%
Staphylococcus aureus	ATCC 10832	5.5E+01 copies/mL	20/20 100%
Ureaplasma urealyticum	ATCC 27618	5.0E+01 copies/mL	20/20 100%
Ureaplasma parvum	ATCC 27815	4.0E+01 copies/mL	20/20 100%
Providencia stuartii	Zeptometrix 0810452CF	4.5E+01 copies/mL	20/20 100%
Candida albicans	ATCC 10231	3.4E+02 copies/mL	20/20 100%
Candida glabrata	ATCC 90030	4.4E+01 copies/mL	20/20 100%
Candida parapsilosis	ATCC 22019	5.8E+01 copies/mL	20/20 100%
Candida tropicalis	ATCC 750	5.7E+01 copies/mL	20/20 100%
Candida krusei	ATCC 2159	6.8E+01 copies/mL	20/20 100%
Candida auris	ATCC MYA-5003	7.2E+01 copies/mL	19/20 95%

10.2. Device Equivalence Study

Device equivalence study was carried out to observe the differences between the results to be obtained using the kit in different instruments. For this purpose, the same LoD determination study was performed again with the Bio-Rad CFX96™ Dx/CFX Opus 96™/CFX Opus 96™ Dx/CFX384 Touch™/CFX Opus 384™, Applied Biosystems QuantStudio 5, 7, and 12K, Qiagen Rotor-Gene Q

5plex Platform and Roche LightCycler 480. Similar test results were obtained with the 1x LoD concentration level of the targets in the "device equivalence study" performed with the other instruments.

10.3. Analytical Reactivity (Inclusivity)

10.3.1. In-Slico Analytical Reactivity

BLAST search of the oligonucleotides was performed on the Escherichia coli, Streptococcus agalactiae, Klebsiella oxytoca, Staphylococcus saprophyticus, Serratia marcescens, Proteus mirabilis, Aerococcus urinae, Treponema pallidum, Enterobacter cloacae, Pseudomonas aeruginosa, Citrobacter freundii, Klebsiella aerogenes, Klebsiella pneumoniae, Morganella morganii, Corynebacterium urealyticum, Enterococcus faecium, Enterococcus faecalis, Acinetobacter baumannii, Proteus vulgaris, Staphylococcus aureus, Ureplasma (Ureaplasma urealyticum/parvum), Providencia stuartii, Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, Candida krusei, and Candida auris genome sequences available in the NCBI database, using the Primer-BLAST tool of NCBI.

The aggregated result of all in-silico analyzes performed in NCBI database is provided in Table below. The melting temperatures (Tm) of the oligonucleotide sequences with 1-base mismatch, are still higher than the annealing temperature specified in the PCR cycle parameters of the kit. Hence, the single mismatches in the sequences are not expected to affect the inclusivity of the test.

Table 10. In-silico analysis results performed in the NCBI database.

Target	Primer	Total number of target sequences	Ratio of the sequences without mismatch	Ratio of the sequences with 1 base mismatch	Ratio of the sequences with 2 base mismatches	Ratio of the sequences with 3 base mismatches
Escherichia coli	Sense Primer	5.547	99.25%	0.75%	0.00%	0.00%
Escherichia coli	Antisense Primer	5.579	99.65%	0.35%	0.00%	0.00%
Escherichia coli	Hydrolysis Probe	5.579	99.78%	0.22%	0.00%	0.00%
Streptococcus agalactiae	Sense Primer	226	99.95%	0.05%	0.00%	0.00%
Streptococcus agalactiae	Antisense Primer	236	100.00%	0.00%	0.00%	0.00%
Streptococcus agalactiae	Hydrolysis Probe	236	100.00%	0.00%	0.00%	0.00%
Klebsiella oxytoca	Sense Primer	150	99.74%	0.26%	0.00%	0.00%
Klebsiella oxytoca	Antisense Primer	158	99.56%	0.44%	0.00%	0.00%
Klebsiella oxytoca	Hydrolysis Probe	158	99.83%	0.27%	0.00%	0.00%
Staphylococcus saprophyticus	Sense Primer	26	99.52%	0.48%	0.00%	0.00%
Staphylococcus saprophyticus	Antisense Primer	26	97.52%	2.48%	0.00%	0.00%
Staphylococcus saprophyticus	Hydrolysis Probe	26	99.74%	0.26%	0.00%	0.00%
Serratia marcescens	Sense Primer	296	99.80%	0.20%	0.00%	0.00%
Serratia marcescens	Antisense Primer	296	99.80%	0.20%	0.00%	0.00%
Serratia marcescens	Hydrolysis Probe	292	99.82%	0.18%	0.00%	0.00%
Proteus mirabilis	Sense Primer	164	100.00%	0.00%	0.00%	0.00%

Proteus mirabilis	Antisense Primer	164	100.00%	0.00%	0.00%	0.00%
Proteus mirabilis	Hydrolysis Probe	160	99.80%	0.20%	0.00%	0.00%
Aerococcus urinae	Sense Primer	80	100.00%	0.00%	0.00%	0.00%
Aerococcus urinae	Antisense Primer	80	100.00%	0.00%	0.00%	0.00%
Aerococcus urinae	Hydrolysis Probe	76	100.00%	0.00%	0.00%	0.00%
Treponema pallidum	Sense Primer	538	99.64%	0.36%	0.00%	0.00%
Treponema pallidum	Antisense Primer	538	99.64%	0.36%	0.00%	0.00%
Treponema pallidum	Hydrolysis Probe	538	99.50%	0.50%	0.00%	0.00%
Enterobacter cloacae	Sense Primer	683	99.63%	0.37%	0.00%	0.00%
Enterobacter cloacae	Antisense Primer	669	99.12%	0.88%	0.00%	0.00%
Enterobacter cloacae	Hydrolysis Probe	669	99.82%	0.18%	0.00%	0.00%
Pseudomonas aeruginosa	Sense Primer	1.162	99.75%	0.25%	0.00%	0.00%
Pseudomonas aeruginosa	Antisense Primer	1.167	99.79%	0.21%	0.00%	0.00%
Pseudomonas aeruginosa	Hydrolysis Probe	1.167	99.84%	0.16%	0.00%	0.00%
Citrobacter freundii	Sense Primer	175	99.70%	0.30%	0.00%	0.00%
Citrobacter freundii	Antisense Primer	175	99.70%	0.30%	0.00%	0.00%
Citrobacter freundii	Hydrolysis Probe	168	99.90%	0.10%	0.00%	0.00%
Klebsiella aerogenes	Sense Primer	83	98.52%	1.48%	0.00%	0.00%
Klebsiella aerogenes	Antisense Primer	82	97.11%	2.89%	0.00%	0.00%
Klebsiella aerogenes	Hydrolysis Probe	82	96.85%	3.15%	0.00%	0.00%
Klebsiella pneumoniae	Sense Primer	2.816	100.00%	0.00%	0.00%	0.00%
Klebsiella pneumoniae	Antisense Primer	2.711	100.00%	0.00%	0.00%	0.00%
Klebsiella pneumoniae	Hydrolysis Probe	2.711	99.66%	0.34%	0.00%	0.00%
Morganella morganii	Sense Primer	81	99.84%	0.16%	0.00%	0.00%
Morganella morganii	Antisense Primer	81	99.84%	0.16%	0.00%	0.00%
Morganella morganii	Hydrolysis Probe	80	99.52%	0.48%	0.00%	0.00%
Corynebacterium urealyticum	Sense Primer	30	100.00%	0.00%	0.00%	0.00%
Corynebacterium urealyticum	Antisense Primer	30	100.00%	0.00%	0.00%	0.00%
Corynebacterium urealyticum	Hydrolysis Probe	30	100.00%	0.00%	0.00%	0.00%
Enterococcus faecium	Sense Primer	552	98.68%	1.32%	0.00%	0.00%
Enterococcus faecium	Antisense Primer	555	98.68%	1.32%	0.00%	0.00%
Enterococcus faecium	Hydrolysis Probe	555	98.46%	1.54%	0.00%	0.00%

Enterococcus faecalis	Sense Primer	575	100.00%	0.00%	0.00%	0.00%
Enterococcus faecalis	Antisense Primer	578	100.00%	0.00%	0.00%	0.00%
Enterococcus faecalis	Hydrolysis Probe	578	99.89%	0.11%	0.00%	0.00%
Acinetobacter baumannii	Sense Primer	1.703	99.35%	0.65%	0.00%	0.00%
Acinetobacter baumannii	Antisense Primer	1.701	99.89%	0.21%	0.00%	0.00%
Acinetobacter baumannii	Hydrolysis Probe	1.701	99.47%	0.53%	0.00%	0.00%
Proteus vulgaris	Sense Primer	155	99.83%	0.17%	0.00%	0.00%
Proteus vulgaris	Antisense Primer	155	99.83%	0.17%	0.00%	0.00%
Proteus vulgaris	Hydrolysis Probe	157	99.85%	0.15%	0.00%	0.00%
Staphylococcus aureus	Sense Primer	2.491	99.65%	0.35%	0.00%	0.00%
Staphylococcus aureus	Antisense Primer	2.703	99.74%	0.26%	0.00%	0.00%
Staphylococcus aureus	Hydrolysis Probe	2.703	99.62%	0.38%	0.00%	0.00%
Ureplasma	Sense Primer	90	99.90%	0.10%	0.00%	0.00%
Ureplasma	Antisense Primer	90	99.90%	0.10%	0.00%	0.00%
Ureplasma	Hydrolysis Probe	88	99.90%	0.10%	0.00%	0.00%
Providencia stuartii	Sense Primer	23	100.00%	0.00%	0.00%	0.00%
Providencia stuartii	Antisense Primer	23	100.00%	0.00%	0.00%	0.00%
Providencia stuartii	Hydrolysis Probe	22	100.00%	0.00%	0.00%	0.00%
Candida auris	Sense Primer	501	100,00%	0,00%	0.00%	0.00%
Candida auris	Antisense Primer	501	100,00%	0,00%	0.00%	0.00%
Candida auris	Hydrolysis Probe	499	100,00%	0,00%	0.00%	0.00%
Candida krusei	Sense Primer	1.415	100%	0.00%	0.00%	0.00%
Candida krusei	Antisense Primer	1.415	100%	0.00%	0.00%	0.00%
Candida krusei	Hydrolysis Probe	1.415	100%	0.00%	0.00%	0.00%
Candida albicans	Sense Primer	3.629	99.69%	0.31%	0.00%	0.00%
Candida albicans	Antisense Primer	3.728	98.85%	2.25%	0.00%	0.00%
Candida albicans	Hydrolysis Probe	3.728	98.52%	2.48%	0.00%	0.00%
Candida parapsilosis	Sense Primer	2.559	99.74%	0.26%	0.00%	0.00%
Candida parapsilosis	Antisense Primer	2.463	100%	0.00%	0.00%	0.00%
Candida parapsilosis	Hydrolysis Probe	2.463	100%	0.00%	0.00%	0.00%
Candida tropicalis	Sense Primer	1.164	98.40%	2.60%	0.00%	0.00%
Candida tropicalis	Antisense Primer	1.906	97.83%	2.17%	0.00%	0.00%

Candida tropicalis	Hydrolysis Probe	1.906	97.12%	2.88%	0.00%	0.00%
Candida glabrata	Sense Primer	763	100%	0.00%	0.00%	0.00%
Candida glabrata	Antisense Primer	1.111	99.20%	0.80%	0.00%	0.00%
Candida glabrata	Hydrolysis Probe	1.111	99.64%	0.36%	0.00%	0.00%

10.3.2. Wet-Test Analytical Reactivity

The analytical reactivity (inclusivity) of the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* was demonstrated with a comprehensive panel representing temporal, evolutionary, and geographic diversity for each of the target organisms.

Each sample was tested with the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* in triplicate at an initial concentration 3-fold higher than the LoD determined for each analyte. In cases where the expected targets were not detected in one or more replicates, concentrations at a 3-fold higher level were evaluated.

The individual strains and concentrations at which positive test results were obtained for all three (3) replicates are presented by target organism in Table 11 below.

Table 11. Results of the wet inclusivity test.

Variant/Type/Subtype/Lineage/Genotype/Species	Isolate ID/Source	xLoD Detected
Escherichia coli	ATCC 25922	1x
Streptococcus agalactiae	ATCC 12386	1x
Klebsiella oxytoca	ATCC 700324	1x
Staphylococcus saprophyticus	Zeptometrix 0804014	1x
Serratia marcescens	ATCC 29021	1x
Proteus mirabilis	Zeptometrix 0801544	1x
Aerococcus urinae	ATCC 51268	1x
Treponema pallidum	ATCC BAA-2642SD	1x
Enterobacter cloacae	Zeptometrix 0801830	1x
Pseudomonas aeruginosa	ATCC 27853	1x
Citrobacter freundii	Zeptometrix 0801563	1x
Klebsiella aerogenes	ATCC 13048	1x
Klebsiella pneumoniae	NCTC 13465	1x
Morganella morganii	Zeptometrix 0804010	1x
Corynebacterium urealyticum	ATCC 43044	1x
Enterococcus faecium	ATCC BAA-2127	1x
Enterococcus faecalis	Zeptometrix 0804216	1x

Acinetobacter baumannii	ATCC 19606	1x
Proteus vulgaris	Zeptometrix 0810290CF	1x
Staphylococcus aureus	ATCC 10832	1x
Ureaplasma urealyticum	ATCC 27618	1x
Ureaplasma parvum	ATCC 27815	1x
Providencia stuartii	Zeptometrix 0810452CF	1x
Candida albicans	ATCC 10231	1x
Candida glabrata	ATCC 90030	1x
Candida parapsilosis	ATCC 22019	1x
Candida tropicalis	ATCC 750	1x
Candida krusei	ATCC 2159	1x
Candida auris	ATCC MYA-5003	1x

10.4. Analytical Specificity (Exclusivity)

10.4.1. In-Slico Analytical Specificity

Primers and probes intended for a target sequence may also attach to similar sequences if they closely match or differ by only a few base pairs from the non-targeted sequence. To ensure specificity to the target amplicon sequence, it's essential to screen the primers and probe against the reference database transcript or genome database for the intended templates, as well as any databases containing potential contaminating templates.

Table 12. The results of On-Panel and Off-Panel organisms tested for cross-reactivity.

O . D WOM D I	No. 10 february days		Cross Reactivity*	
On-Panel/Off-Panel	Name of the organism	Forward	Probe	Reverse
On-Panel	Escherichia coli	None	None	None
On-Panel	Streptococcus agalactiae	None	None	None
On-Panel	Klebsiella oxytoca	None	None	None
On-Panel	Staphylococcus saprophyticus	None	None	None
On-Panel	Serratia marcescens	None	None	None
On-Panel	Proteus mirabilis	None	None	None
On-Panel	Aerococcus urinae	None	None	None
On-Panel	Treponema pallidum	None	None	None
On-Panel	Enterobacter cloacae	None	None	None
On-Panel	Pseudomonas aeruginosa	None	None	None

On-Panel	Citrobacter freundii	None	None	None
On-Panel	Klebsiella aerogenes	None	None	None
On-Panel	Klebsiella pneumoniae	None	None	None
On-Panel	Morganella morganii	None	None	None
On-Panel	Corynebacterium urealyticum	None	None	None
On-Panel	Enterococcus faecium	None	None	None
On-Panel	Enterococcus faecalis	None	None	None
On-Panel	Acinetobacter baumannii	None	None	None
On-Panel	Proteus vulgaris	None	None	None
On-Panel	Staphylococcus aureus	None	None	None
On-Panel	Ureaplasma urealyticum	None	None	None
On-Panel	Ureaplasma parvum	None	None	None
On-Panel	Providencia stuartii	None	None	None
On-Panel	Candida albicans	None	None	None
On-Panel	Candida glabrata	None	None	None
On-Panel	Candida parapsilosis	None	None	None
On-Panel	Candida tropicalis	None	None	None
On-Panel	Candida krusei	None	None	None
On-Panel	Candida auris	None	None	None
Off-Panel	Staphylococcus epidermidis	None	None	None
Off-Panel	Staphylococcus haemolyticus	None	None	None
Off-Panel	Staphylococcus lugdunensis	None	None	None
Off-Panel	Streptococcus dysgalactiae	None	None	None
Off-Panel	Streptococcus pyogenes	None	None	None
Off-Panel	Fusarium solani	None	None	None
Off-Panel	Microsporum spp.	None	None	None
Off-Panel	Trichophyton spp.	None	None	None
Off-Panel	Acinetobacter iwoffi	None	None	None
Off-Panel	Acinetobacter nosocomalis	None	None	None
Off-Panel	Stenotrophomonas maltophilia	None	None	None
Off-Panel	Moraxella catarrhalis	None	None	None
Off-Panel	Pasteurella stomatis	None	None	None

Epidermophyton floccosum	None	None	None
Finegoldia magna	None	None	None
Bartonella henselae	None	None	None
Haemophilus influenzae	None	None	None
Candida sojae	None	None	None
Candida oregonensis	None	None	None
Malessezia restricta	None	None	None
Peptoniphilus harei	None	None	None
Peptoniphilus ivorii	None	None	None
Peptostreptococcus prevotii	None	None	None
Peptostreptococcus anaerobius	None	None	None
Listeria monocytogenes	None	None	None
Candida lusitaniae	None	None	None
Kingella kingae	None	None	None
Chlamydia trachomatis	None	None	None
Legionella dumoffii	None	None	None
Corynebacterium diphtheriae	None	None	None
Neisseria meningitidis	None	None	None
	Finegoldia magna Bartonella henselae Haemophilus influenzae Candida sojae Candida oregonensis Malessezia restricta Peptoniphilus harei Peptoniphilus ivorii Peptostreptococcus prevotii Peptostreptococcus anaerobius Listeria monocytogenes Candida lusitaniae Kingella kingae Chlamydia trachomatis Legionella dumoffii Corynebacterium diphtheriae	Finegoldia magna None Bartonella henselae None Haemophilus influenzae None Candida sojae None Candida oregonensis None Malessezia restricta None Peptoniphilus harei None Peptoniphilus ivorii None Peptostreptococcus prevotii None Peptostreptococcus anaerobius None Listeria monocytogenes None Candida lusitaniae None Kingella kingae None Chlamydia trachomatis None Legionella dumoffii None Corynebacterium diphtheriae None	Finegoldia magna None None Bartonella henselae None None Haemophilus influenzae None None Candida sojae None None Candida oregonensis None None Malessezia restricta None None Peptoniphilus harei None None Peptoniphilus ivorii None None Peptostreptococcus prevotii None None Listeria monocytogenes None None Kingella kingae None None Candida lusitaniae None None Chlamydia trachomatis None None Legionella dumoffii None None None None Corynebacterium diphtheriae None None

^{*} Homology should be <80% between the cross-reactivity microorganisms and the test primers/ probe(s).

10.4.2. Wet-Test Analytical Specificity

The potential for non-specific amplification by assays for detection of analytes was evaluated by testing high concentrations of organisms or nucleic acids with the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*. On-panel organisms were tested to assess the potential for intra-panel cross-reactivity, and off-panel organisms were tested to evaluate panel specificity. Off-panel organisms included normal flora and pathogens that may be present in specimens as well as near-neighbors or species genetically related to the organisms detected by the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*. The concentration of organism tested (in triplicate) was at least 1.0E+06 CFU/mL for bacteria, fungi and parasite, and at least 1.0E+05 unit/mL for viruses. For the few organisms of interest that were not available for laboratory testing, results of in silico analysis of the organism's whole genome sequences are indicated. The on-panel and off-panel organisms tested are shown in Table 13 and Table 14.

Table 13. On-Panel organisms tested for evaluation of *MarinaBiolab Urinary Tract Infections Panel PCR Kit* analytical specificity.

Organism	Isolate ID/Source	Cross Reactivity Detected
Escherichia coli	ATCC 25922	None

^{**} In silico sequence analysis indicates the potential for cross-reactivity of Bordetella pertussis with certain strains of Bordetella bronchiseptica.

Streptococcus agalactiae	ATCC 12386	None	
Klebsiella oxytoca	ATCC 700324	None	
Staphylococcus saprophyticus	Zeptometrix 0804014	None	
Serratia marcescens	ATCC 29021	None	
Proteus mirabilis	Zeptometrix 0801544	None	
Aerococcus urinae	ATCC 51268	None	
Treponema pallidum	ATCC BAA-2642SD	None	
Enterobacter cloacae	Zeptometrix 0801830	None	
Pseudomonas aeruginosa	ATCC 27853	None	
Citrobacter freundii	Zeptometrix 0801563	None	
Klebsiella aerogenes	ATCC 13048	None	
Klebsiella pneumoniae	NCTC 13465	None	
Morganella morganii	Zeptometrix 0804010	None	
Corynebacterium urealyticum	ATCC 43044	None	
Enterococcus faecium	ATCC BAA-2127	None	
Enterococcus faecalis	Zeptometrix 0804216	None	
Acinetobacter baumannii	ATCC 19606	None	
Proteus vulgaris	Zeptometrix 0810290CF	None	
Staphylococcus aureus	ATCC 10832	None	
Ureaplasma urealyticum	ATCC 27618	None	
Ureaplasma parvum	ATCC 27815	None	
Providencia stuartii	Zeptometrix 0810452CF	None	
Candida albicans	ATCC 10231	None	
Candida glabrata	ATCC 90030	None	
Candida parapsilosis	ATCC 22019	None	
Candida tropicalis	ATCC 750	None	
Candida krusei	ATCC 2159	None	
Candida auris	ATCC MYA-5003	None	
	•		

Table 14. Off-Panel organisms were tested for evaluation of *MarinaBiolab Urinary Tract Infections Panel PCR Kit* analytical specificity.

	Organism	Isolate ID/Source	Cross Reactivity Detected
--	----------	-------------------	---------------------------

Acinetobacter calcoaceticus	ATCC 23055 None		
Staphylococcus epidermidis	Zeptometrix 0804281	None	
Staphylococcus haemolyticus	Zeptometrix 0801591	None	
Staphylococcus lugdunensis	Zeptometrix 0801555	None	
Streptococcus dysgalactiae	Zeptometrix 0801516	None	
Streptococcus pyogenes	Zeptometrix 0801512	None	
Fusarium solani	Zeptometrix 0801806	None	
Acinetobacter iwoffi	Zeptometrix 0801909	None	
Stenotrophomonas maltophilia	Zeptometrix 0801569	None	
Moraxella catarrhalis	Zeptometrix 0801509	None	
Candida sojae	Zeptometrix 0801825	None	
Listeria monocytogenes	Zeptometrix 0804339	None	
Chlamydia trachomatis	Zeptometrix 0801775	None	
Acinetobacter baumannii	ATCC 19606	None	
Legionella pneumophilia	Zeptometrix 0801530	None	
Neisseria gonorrhoeae	ATCC 19424	None	
Neisseria meningitidis	ATCC 13090	13090 None	
Aspergillus flavus	Zeptometrix 0801598	None	

10.5. Interferences

The ability of endogenous or exogenous substances that could be present in research samples (or introduced during sample collection and handling) to interfere with accurate detection of analytes was evaluated with select direct testing on the *MarinaBiolab Urinary Tract Infections Panel PCR Kit* and extrapolated from the interference evaluation of the *MarinaBiolab Urinary Tract Infections Panel PCR Kit*.

Potentially interfering substances were evaluated using contrived samples spiked with substance. Results from samples containing a substance were compared to results from control samples without substance. The substances tested included endogenous substances that may be found in sample at normal or elevated levels (e.g., blood, mucus/mucin, human genomic DNA), various commensal or infectious microorganisms, medications, washes or topical applications, various swabs and transport media for sample collection, and substances used to clean, decontaminate, or disinfect work areas. Each substance was added to contrived samples containing representative organisms at concentrations near (3x) LoD. The concentration of substance added to the samples was equal to or greater than the highest level expected to be in research sample and each sample was tested in triplicate.

None of the substances were shown to interfere with the MarinaBiolab Urinary Tract Infections Panel PCR Kit.

Table 15. Evaluation of potentially interfering substances on the MarinaBiolab Urinary Tract Infections Panel PCR Kit.

Substance Tested	Concentration Tested	Observed Interference	
Endogenous Substances			
Whole Blood	10% v/v	No Interference	
Human serum	5% v/v	No Interference	
Human Urine	-	No Interference	
	Competitive Microorganisms		
Escherichia coli	1.0E+06 CFU/mL	No Interference	
Streptococcus agalactiae	1.0E+06 CFU/mL	No Interference	
Klebsiella oxytoca	1.0E+06 CFU/mL	No Interference	
Staphylococcus saprophyticus	1.0E+06 CFU/mL	No Interference	
Serratia marcescens	1.0E+06 CFU/mL	No Interference	
Proteus mirabilis	1.0E+06 CFU/mL	No Interference	
Aerococcus urinae	1.0E+06 CFU/mL	No Interference	
Treponema pallidum	1.0E+06 CFU/mL	No Interference	
Enterobacter cloacae	1.0E+06 CFU/mL	No Interference	
Pseudomonas aeruginosa	1.0E+06 CFU/mL	No Interference	
Citrobacter freundii	1.0E+06 CFU/mL	No Interference	
Klebsiella aerogenes	1.0E+06 CFU/mL	No Interference	
Klebsiella pneumoniae	1.0E+06 CFU/mL	No Interference	
Morganella morganii	1.0E+06 CFU/mL	No Interference	
Corynebacterium urealyticum	1.0E+06 CFU/mL	No Interference	
Enterococcus faecium	1.0E+06 CFU/mL	No Interference	
Enterococcus faecalis	1.0E+06 CFU/mL	No Interference	
Acinetobacter baumannii	1.0E+06 CFU/mL	No Interference	
Proteus vulgaris	1.0E+06 CFU/mL	No Interference	
Staphylococcus aureus	1.0E+06 CFU/mL	No Interference	
Ureaplasma urealyticum	1.0E+06 CFU/mL	No Interference	
Ureaplasma parvum	1.0E+06 CFU/mL	No Interference	
Providencia stuartii	1.0E+06 CFU/mL	No Interference	
Candida albicans	1.0E+06 CFU/mL	No Interference	
Candida glabrata	1.0E+06 CFU/mL	No Interference	
Candida parapsilosis	1.0E+06 CFU/mL	No Interference	

Candida tropicalis	1.0E+06 CFU/mL	No Interference	
Candida krusei	1.0E+06 CFU/mL	No Interference	
Candida auris	1.0E+06 CFU/mL	No Interference	
	Exogenous Substances		
Feminine Spray/talcum powder	5% v/v	No Interference	
Phenazopyridine Hydrochloride (Pyridium)	10 μg/mL	No Interference	
Ascorbic acid	0.6 mmol/L	No Interference	
High pH	pH = 8.0	No Interference	
Low pH	pH = 4.0	No Interference	
Antibiotic Pool Amoxicillin trihydrate Metronidazole Tetracycline Hydrochloride Sodium Cefotaxime	1 mg/mL (Each)	No Interference	
Specimen Collection Materials			
Urine Tubes (BD Vacutainer® 364992)	N/A	No Interference	
Starplex™ Scientific Urine Preservative Tube (22046414)	N/A	No Interference	

11. TROUBLESHOOTING

Problem	Cause	Solution	
Target-specific and/or IC signals are detected in the Negative Control well.	Contamination from the environment, contamination of extraction and/or qPCR reagents, or well-to-well cross contamination. The signal is not true target amplification, but background curves generated by the software of the qPCR instrument.	between samples.). It is recommended to set up the qPCR reactions in a separate area, where no RNA/DNA is handled and with equipment designated for pre-PCR activities.	
		Ignore the Cq value of NTC if the amplification curve looks not real but background noise.	
		If the problem persists, contact Technical Support.	
No IC signal is detected, but target-specific signal is detected in sample wells.	A high copy number of target nucleic acid exists in samples, resulting in preferential amplification of the target-specific nucleic acid.	No action is required. The result is considered positive.	
The Positive Control did not meet the criteria set for acceptable values of the kit. The assay is invalid.	Positive Control was not stored at the recommended conditions.	Check the kit label for storage conditions and expiration date.	
	Kit shelf-life expired.	Replace the Positive Control.	
		Use a new kit if necessary.	
High Cq values observed for repeated samples.	Frozen samples were not mixed properly after thawing.	Make sure, thaw frozen samples with mild agitation to ensure thorough mixing.	
	Degraded nucleic acids.	Ensure that samples are stored correctly and not subjected to multiple freeze-thaw cycles	
Target-specific and/or IC signal detected after 38 Cycles in Positive Control.	Incorrect qPCR set-up or the kit reagents may have been compromised (e.g., improper storage or more than 15 freeze-thaw cycles).	Replace the control. If the problem persists, contact Technical Support.	
No target-specific and IC signal is detected in sample wells.	Sampling, extraction, or inhibition problem.	Dilute the nucleic acid isolate 1/10 and repeat the qPCR. If the diluted sample does not give a positive result in the IC channel, request for a new sample and repeat the NA extraction.	
		Repeat the NA extraction and the qPCR.	
		Request for a new sample, repeat the NA extraction and the qPCR. If the problem persists, contact Technical Support.	

12. EXPLANATION of SYMBOLS

Symbol	Title of Symbol	Symbol	Title of Symbol
RUO	Research Use Only		Use-by date
	Manufacturer	LOT	Batch code
CONTROL -	Negative control	NOM STERILE	Non-sterile
CONTROL +	Positive control	$\widehat{\mathbf{i}}$	Consult instructions for use or consult electronic instructions for use
CONTROL	Control	\triangle	Caution
*	Temperature limit	REF	Catalogue number
类	Keep away from sunlight		Do not use if package is damaged and consult instructions for use
学	Keep dry	<u>11</u>	Keep upright
Σ	Contains sufficient for <n> tests</n>	**	Protect from heat and radioactive sources

Custom care and technical support

Tel: +1 510 579-5802

e-mail customer care: accounting@marinabiolab.com

e-mail Technical Support: rd@marinabiolab.com

MarinaBiolab LTD.

Address: Hürriyet Mah. Erler So. No: 4/1A Nexus No: 13 Kartal/Istanbul/Turkey

For research use only (RUO)! Not for use in diagnostic procedures.

© 2024 MarinaBiolab LTD.; all rights reserved.